• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (S1): 131-138.DOI: 10.3973/j.issn.2096-4498.2024.S1.014

• 研究与探索 • 上一篇    下一篇

盾构排浆管道内块石流速分析与沉积临界泥浆流速公式推导

田公明1, 田冶平2, 向代刚1, 甘虎1, 刘炜1   

  1. (1. 三川德青工程机械有限公司, 湖北 宜昌 443005 2. 绍兴市轨道交通集团有限公司, 浙江 绍兴 312000)
  • 出版日期:2024-08-20 发布日期:2024-09-02
  • 作者简介:田公明(1968—),男,湖北宜昌人,1992年毕业于湖北大学,机械设计制造及其自动化专业,本科,副高级工程师,现从事工程机械开发工作。E-mail: 2949789427@qq.com。

Analysis of Flow Velocity of Block Stones in Shield Tunnel Slurry Discharge Pipeline and Formula Derivation for Flow Rate  of Sedimentation Critical Mud

TIAN Gongming1, TIAN Yeping2, XIANG Daigang1, GAN Hu1, LIU Wei1   

  1. (1. Safecleen Engineering Machinery Co., Ltd., Yichang 443005, Hubei, China; 2. Shaoxing Rail Transit Co., Ltd., Shaoxing 312000, Zhejiang, China)
  • Online:2024-08-20 Published:2024-09-02

摘要: 为了明晰排浆管道内各种块石的流速情况,探讨块石沉积形成的管道堵塞和泥浆流速的关系,首先,根据流体力学基本方程推导出泥浆液动力计算式;然后,从运动力学角度对水平、斜向上、斜向下、垂直向上管道内的石块取最难排出的状态进行受力分析;最后,对不同形状、不同粒径石块,在不同倾斜角度的泥浆通道内随泥浆流动,达到受力平衡时和泥浆流速差值计算公式进行推导,进而分析推导出各种块石沉积临界泥浆流速计算公式,并设定工程数据试算。得出以下结论: 1)不同尺寸、不同形状、不同密度的块石在不同倾角排浆管道内差速流动、流动速度自动分级、沉积临界泥浆流速不同; 2)密度小、体积小的块石运动速度快、沉积临界泥浆流速小; 3)相同重量、密度的块石,球形的运动速度最快、沉积临界泥浆流速最小,正方体形的次之,长条形的运动速度最慢、沉积临界泥浆流速最大,长径比越大流速越慢、沉积临界泥浆流速越大; 4)同一块石,在向下管道流速最快、沉积临界泥浆流速最小,水平管道次之,在垂直上升管道流速最小、沉积临界泥浆流速最大。重点控制始发井和地面垂直向上管道内的泥浆流速至关重要。通过计算以适用经济的泥浆流速来预防排泥管道堵塞。

关键词: 泥水盾构, 排浆管道, 泥浆液动力, 恒定速率状态, 差速流动, 流速自动分级, 流速差, 块石沉积临界泥浆流速

Abstract: In order to clarify the flow velocity of various block stones in the slurry discharge pipeline and explore the relationship between pipeline blockage formed by block stone deposition and slurry flow velocity, a slurry hydrodynamic calculation formula is derived based on the basic equations of fluid mechanics. Then, from the perspective of motion mechanics, the force analysis is conducted on the most difficult to discharge state of the stones in the horizontal, oblique upward, oblique downward, and vertical upward pipelines. Last, different shapes and particle sizes of stones are analyzed, the formula for calculating the critical mud velocity difference when the mud flows in the mud channel at different tilt angles reaching force equilibrium is derived; the formula for calculating the critical mud velocity of various block stone deposits are then analyzed and derived; and engineering data for trial calculation are set. Conclusions are drawn as follows: (1) With different sizes, shapes, and densities, the block stones flowes at different angles in the mud discharge pipeline with different differential speeds, flow velocity can be automatically classified, and critical mud velocity of sedimentation are different. (2) The stones with lower density and small volume block have faster movement speed and lower critical mud flow rate for sedimentation. (3) With the same weight and density, the stone of spherical shape have the fastest movement speed and the minimum critical mud flow rate for sedimentation, followed by the square shape; the stones of elongated shape have the slowest movement speed and the maximum critical mud flow rate for sedimentation; and the stones with larger length-diameter ratio have the slower flow rate and the greater the critical mud flow rate for sedimentation. (4) A stone has the fastest flow velocity and the lowest critical mud flow velocity in the downward pipeline, followed by that in the horizontal pipeline, and that in the vertical upward pipeline has the lowest flow velocity and the highest critical mud flow velocity. It is important to control the mud flow rate in the launching shaft or in the vertical upward pipeline on the ground. In order to apply an economical mud flow rate for preventing block up in the mud discharge pipeline, the mud flow rate must been calculated.

Key words: slurry shield, slurry discharge pipeline, mud fluid dynamics, constant rate state, flow in differential speed, automatic classification of flow rate, flow velocity difference, critical mud flow rate of block stone sedimentation