• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (S2): 73-83.DOI: 10.3973/j.issn.2096-4498.2024.S2.007

• 研究与探索 • 上一篇    下一篇

砂土地层隧道掌子面稳定性的物质点法分析

王明年1, 2, 杨恒洪1 2 *, 王旭3, 刘思杨3, 于丽1 2, 刘大刚1 2   

  1. 1. 极端环境岩土和隧道工程智能建养全国重点实验室, 四川 成都 610031; 2. 西南交通大学土木工程学院, 四川 成都 610031; 3. 川藏铁路技术创新中心有限公司, 四川 成都 610213)

  • 出版日期:2024-12-20 发布日期:2024-12-20
  • 作者简介:王明年(1965—),男,安徽舒城人,1999年毕业于西南交通大学,桥梁与隧道工程专业,博士,教授,主要从事桥梁与隧道工程等领域 的教学与科研工作。 E-mail: swjtuwmn@163.com。 *通信作者: 杨恒洪, E-mail: henghong.yang@my.swjtu.edu.cn。

Material Point Method Analysis for Stability of Tunnel Face in Sandy Stratum

WANG Mingnian1, 2, YANG Henghong1, 2 , *, WANG Xu3, LIU Siyang3, YU Li1, 2, LIU Dagang1, 2   

  1. (1. State Key Laboratory of Intelligent Geotechnics and Tunnelling, Chengdu 610031, Sichuan, China; 2. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; 3. National Center of Technology Innovation for Sichuan-Tibet Railway, Chengdu 610213, Sichuan, China)

  • Online:2024-12-20 Published:2024-12-20

摘要: 大型机械化隧道施工是保证隧道安全、高效、绿色掘进的有效施工方式。大型机械化施工往往配合采用全断面法开挖隧道,此时隧道掌子面开挖面积大、掘进速度快,容易出现掌子面失稳现象; 而隧道掌子面的稳定性对隧道施工安全具有举足轻重的意义。通过引入物质点法来研究掌子面的稳定类型和变形特征,首先,通过模型试验结果对比验证物质点法数值模型,2种模型围岩的剪应变带在量级、范围和演化过程上都吻合良好; 其次,考虑未支护段长度(L)、围岩黏聚力(c)和围岩摩擦角(φ),基于物质点法模型进行120种不同工况模拟。结果表明: 1)隧道掌子面稳定性表现为掌子面稳定(稳定类型Ⅰ)、掌子面暂时稳定(稳定类型Ⅱ)和掌子面失稳(稳定类型Ⅲ)3种。其中,稳定类型Ⅱ的掌子面剪切带形态为抛物线形或椭圆+矩形,稳定类型Ⅲ为椭圆+对数螺旋形。2c/D/γφ存在分界值(D为隧道直径),当c/D/γ0.09或φ≤11°时,不同L下的隧道面稳定类型均为稳定类型Ⅲ,L的增大导致稳定类型Ⅱ发生的可能性减小。

关键词: 砂土地层, 隧道掌子面, 未支护段长度, 物质点法, 稳定类型, 变形特征

Abstract: The employment of large-scale mechanized tunnel construction represents an effective method to ensure the safety, efficiency, and environmental sustainability of tunnel excavation. Typically, this method involves full-face tunneling, characterized by large excavation areas and rapid excavation rates, often precipitating face instability. The stability of the tunnel face, consequently, holds paramount importance for the overall safety of tunnel construction. Accordingly, the authors introduce the material point method to the investigation of the various stability modes and failure characteristics of the tunnel face. Initially, the numerical model utilizing the material point method is validated through a comparative analysis with experimental results, revealing a strong concordance in the magnitude, extent, and evolution of shear strain zones within the surrounding rock across both models. Subsequently, considering factors such as the unsupported length (L), the cohesion (c) of the surrounding rock, and the friction angle (φ), a total of 120 distinct working conditions are simulated using the material point method model. The results indicate that: (1) The stability of tunnel face presents three modes, stable face (Mode ), temporarily stable face (Mode ), and unstable face (Mode ). The failure mode for Mode is characterized by a combination of parabolic or elliptical shapes with rectangular forms, while Mode exhibits an elliptical shape accompanied by a logarithmic spiral. (2) A critical boundary exists between c/D/γ and φ (where D represents the tunnel diameter and γ represents the bulk density). When c/D/γ0. 09 or φ11°, the stability mode of the tunnel face under varying L consistently aligns with Mode stability. Moreover, an increase in L correlates with a reduced likelihood of encountering Mode stability.

Key words: sandy stratum, tunnel face; unsupported length, material point method, stability mode, deformation characteristics