• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (7): 1286-1297.DOI: 10.3973/j.issn.2096-4498.2025.07.005

• 研究与探索 • 上一篇    下一篇

基于元启发式算法优化XGBoost的隧道围岩节理剪切强度预测模型研究

张金戈1, 2, 3, 杜岩1, 2, 蒋宇静3, 陈红宾3, *, 张孙豪3, 刘敬楠2, 3, 尚栋琦3   

  1. (1. 高原山地环境下设施破坏机制与防护重庆市重点实验室, 重庆 401331; 2. 北京科技大学 城市地下空间工程北京市重点实验室, 北京 100083; 3. 长崎大学工学研究科, 日本 长崎 8528521)
  • 出版日期:2025-07-20 发布日期:2025-07-20
  • 作者简介:张金戈(1996—),男,山东滨州人,长崎大学岩土工程专业在读博士,现主要从事岩土工程地质灾害防控领域的科研工作。E-mail: jingezh@outlook.com。 *通信作者: 陈红宾, E-mail: chen.hongbin@outlook.com。

Metaheuristic-Optimized XGBoost Model for Predicting Shear Strength of Jointed Rock Masses in Tunnel Engineering

ZHANG Jinge1, 2, 3, DU Yan1, 2, JIANG Yujing3, CHEN Hongbin3, *, ZHANG Sunhao3, LIU Jingnan2, 3, SHANG Dongqi3   

  1. (1. Chongqing Key Laboratory of Failure Mechanism and Protection of Facility in Plateau and Mountain Environment, Chongqing 401331, China; 2. Beijing Key Laboratory of Urban Underground Space Engineering, University of Science and Technology Beijing, Beijing 100083, China; 3. Graduate School of Engineering, Nagasaki University, Nagasaki 8528521, Japan)
  • Online:2025-07-20 Published:2025-07-20

摘要: 为准确预测节理岩体的剪切强度,进而实现隧道施工中围岩稳定性的智能评估,提出一种基于元启发式算法优化的XGBoost(eXtreme Gradient Boosting)模型。首先,在分析节理岩体剪切机制的基础上,选取节理粗糙度系数(JRC)、岩石单轴抗压强度(UCS)、岩石弹性模量(YM)、法向应力(NS)和剪切面长度(SSL)作为输入参数,峰值剪切强度(PSS)作为输出参数,相关性分析显示法向应力是峰值剪切强度的主控因子。然后,采用平衡优化器(EO)、灰狼优化算法(GWO)和黏菌算法(SMA)对 XGBoost 的超参数进行优化,确定初始种群数量的最优设置。最后,将3种优化模型的预测性能与随机搜索优化的 XGBoost 模型、随机森林(RF)模型和支持向量回归(SVR)模型进行对比分析。结果表明, 3种基于元启发式算法优化的模型整体性能均优于随机搜索优化模型,且SMA 优化的 XGBoost 模型表现最优(RMSE=0.393 21,R2=0.996 24,MAE=0.256 89,VAF=0.996 25),验证了元启发式算法在提升模型性能方面的有效性。此外,SHAP分析也确认法向应力在模型预测中的主导作用。本研究为隧道工程中围岩稳定性的智能动态评估提供了一种高效可靠的机器学习方法。

关键词: 隧道工程, 节理剪切强度, XGBoost模型, 元启发式算法, 机器学习

Abstract: Accurately predicting the shear strength of jointed rock masses is crucial for intelligently evaluating the surrounding rock stability during tunnel construction. In this study, the authors propose a machine learning approach based on the XGBoost model, whose hyperparameters are optimized using metaheuristic algorithms. Five input features—joint roughness coefficient, uniaxial compressive strength, elastic modulus, normal stress, and shear surface length—are selected based on an analysis of joint shear behavior, with peak shear strength as the output. Correlation analysis identifies normal stress as the most significant factor influencing the shear strength. Three metaheuristic algorithms—equilibrium optimizer (EO), grey wolf optimizer (GWO), and slime mould algorithm (SMA)—are used to optimize the XGBoost model, and the optimal initial population size for each algorithm is determined. The performance of the resulting hybrid models (EO-XGBoost, GWO-XGBoost, and SMA-XGBoost) is compared with models optimized using random search, as well as traditional machine learning models such as random forest and support vector regression. The results demonstrate that all three metaheuristic-optimized models significantly outperform the baseline methods, with the SMA-XGBoost model achieving the highest predictive accuracy (RMSE=0.393 21, R2=0.996 24, MAE=0.256 89, and VAF=0.996 25). Furthermore, the Shapley additive explanation analysis reveals that NS is the most influential feature in the prediction process. Overall, this study provides a robust and efficient data-driven framework for accurately predicting joint shear strength, supporting real-time stability assessments in tunnel engineering.

Key words: tunnel engineering, joint shear strength, XGBoost model, metaheuristic algorithms, machine learning