• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (3): 579-586.DOI: 10.3973/j.issn.2096-4498.2025.03.013

• 地质与勘察 • 上一篇    下一篇

融合钻进参数与地震波反射法的隧道围岩级别分类预测模型研究

徐昆杰1, 张治荣1, 向露露2, 3, *, 程海兵2, 3, 童建军2, 3, 叶沛2, 3, 苗兴旺2, 3   

  1. 1. 京昆高速铁路西昆有限公司, 重庆 400023; 2. 西南交通大学 交通隧道工程教育部重点实验室, 四川 成都 610031 3. 西南交通大学土木工程学院, 四川 成都 610031
  • 出版日期:2025-03-20 发布日期:2025-03-20
  • 作者简介:徐昆杰(1985—),男,四川仪陇人,2010年毕业于西南交通大学,土木工程专业,本科,高级工程师,现从事隧道建设管理工作。E-mail: 1097742366@qq.com。*通信作者: 向露露, E-mail: 1097742366@qq.com。

Classification and Prediction Model of Tunnel Surrounding Rock Grade by Integrating Drilling Parameters and Tunnel Seismic Prediction Data

XU Kunjie1, ZHANG Zhirong1, XIANG Lulu2, 3, *, CHENG Haibing2, 3, TONG Jianjun2, 3, YE Pei2, 3, MIAO Xingwang2, 3   

  1. (1. Beijing-Kunming High-Speed Railway Xikun Co., Ltd., Chongqing 400023, China; 2. Key Laboratory of Transportation Tunnel Engineering, the Ministry of Education, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; 3. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China)
  • Online:2025-03-20 Published:2025-03-20

摘要: 为综合利用隧道勘察及施工阶段的地质信息,提升掌子面围岩级别判识的准确性,提出一种基于钻进参数与超前地质预报地震波反射法(TSP)融合的围岩级别智能判识方法。首先,从施工现场收集钻进参数、TSP报告及掌子面地质素描,读取相应的数据与围岩级别信息。其次,为明确钻进参数与地震波反射法的融合方式,设置5种融合工况,并选择4种机器学习分类算法(K近邻、梯度提升树、随机森林、极限树)验证融合数据的可分性。考虑到数据划分方式对模型的拟合能力有影响,通过设置随机数种子对数据集进行500种划分,以使各模型充分拟合。研究结果表明: 采用钻进参数中的进给速度、推进压力、打击压力及回转压力与TSP中纵波速度、横波速度进行融合的工况下,模型分类效果最好,最大准确率为91.3%(采用极限树模型)。最后,使用贝叶斯优化算法对极限树模型的超参数进行优化,通过对比分析,经过优化后的模型在各个围岩级别上的分类性能均有所提升,且总体准确率为93.27%,提升了1.93%

关键词: 隧道, 围岩分级, 钻进参数, 地震波反射法, 机器学习, 贝叶斯优化算法

Abstract: An intelligent surrounding rock grade identification method based on the fusion of drilling parameters and tunnel seismic prediction (TSP) method is proposed to improve the identification accuracy of surrounding rock grade based on geological information in tunnel survey and construction stages. Drilling parameters, TSP reports, and geological sketches are collected from the construction site to interpret corresponding data and surrounding rock information. Then, five fusion scenarios are set and four machine leaning classification algorithms, i.e., K-nearest neighbor, gradient boosting tree, random forest, and extreme tree, are employed to verify the separability of fused data for determining the final fusion mode of the drilling parameters and TSP data. To determine the impact of various data partitioning methods on the fitting ability of models, 500 partitioning modes are applied to the dataset by setting random number seeds to fully fit each model. Results show that the extreme tree model yields the best surrounding rock grade classification effect with a maximum accuracy of 91.3% by fusing drilling parameters such as feed rate, thrust pressure, impact pressure, and rotation pressure with the longitudinal and transverse wave velocities in TSP, respectively. Finally, the Bayesian optimization algorithm is used to optimize the hyperparameters of the extreme tree model. The optimized model exhibits improved classification performance for various rock grades, with overall and increase accuracies of 93.27% and 1.93%, respectively.

Key words: tunnel, rock mass classification, drilling parameters, tunnel seismic prediction, machine learning, Bayesian optimization