• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (7): 1378-1386.DOI: 10.3973/j.issn.2096-4498.2025.07.015

• 施工机械 • 上一篇    下一篇

存量地铁盾构自主掘进姿态控制功能改造与工程实践

朱叶艇1, 2, 毕湘利3, 朱雁飞1, 于宁3, 吴迪3, 秦元1, 2, 王志华1, 4, 姜海波3   

  1. (1. 上海隧道工程有限公司, 上海 200232; 2. 上海城建隧道装备有限公司, 上海 200137; 3. 上海申通地铁集团有限公司, 上海 201103; 4. 华中科技大学土木与水利工程学院, 湖北 武汉 430074)
  • 出版日期:2025-07-20 发布日期:2025-07-20
  • 作者简介:朱叶艇(1987—),男,浙江绍兴人,2017年毕业于同济大学,隧道及地下建筑工程专业,博士,正高级工程师,现主要从事地下空间施工新技术与盾构装备智能技术的研发工作。E-mail: zhuyeting@stecmc.com。

Retrofit and Engineering Practice of Automatic Tunneling Attitude Control for Existing Metro Shield Machines

ZHU Yeting1, 2, BI Xiangli3, ZHU Yanfei1, YU Ning3, WU Di3, QIN Yuan1, 2, WANG Zhihua1, 4, JIANG Haibo3   

  1. (1. Shanghai Tunnel Engineering Co., Ltd., Shanghai 200232, China; 2. Shanghai Urban Construction Tunnel Equipment Co., Ltd., Shanghai 200137, China; 3. Shanghai Shentong Metro Co., Ltd., Shanghai 201103, China; 4. School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China)
  • Online:2025-07-20 Published:2025-07-20

摘要: 为提升存量传统盾构循环利用率、践行我国地下工程绿色可持续发展目标,结合上海轨道交通某区间盾构工程项目,设计一种针对存量地铁盾构进行自主掘进姿态控制功能加载的微改造方案。通过系统架构设计、分区目标油压寻优计算,实现基于推力矢量技术的盾构自主掘进姿态控制方法的跨直径、跨模式工程应用。研究结果表明: 1)基于目标推力矢量分配的推进分区目标油压执行情况良好,控制精度达±5%; 2)为确保盾构持续匀速掘进能力,目标推力控制在高于实际推力3%的范围,掘进速度控制在设定值±3 mm/min; 3)盾构姿态变化与推力矢量作用点位移之间呈现镜像对称的交互特征,单个区间内盾构切口水平和高程姿态控制在设定目标±10 mm的管片环数比例达98%以上。

关键词: 存量盾构, 智能改造, 自主掘进, 推力矢量, 工程实践

Abstract: To improve the utilization rate of existing conventional shield machines and align with China′s sustainable development strategies in underground engineering, the authors propose a micro-transformation scheme for retrofitting the automatic tunneling attitude control function of existing shield machines. The approach is contextualized within a shield tunneling project in the Shanghai metro. The system architecture is designed, and thrust distribution calculations are performed in different propulsion zones, enabling a cross-diameter and cross-mode engineering application of a thrust vectoring adaptive control method for shield attitude regulation. The following conclusions are drawn: (1) The execution of target oil pressures in the propulsion zones, based on target thrust vector distribution, achieves a control accuracy within ±5%. (2) To maintain consistent and uniform advancement capability, the target thrust is controlled approximately 3% higher than the actual thrust, with the shield speed controlled within ±3 mm/min of the set value. (3) The interaction characteristics between changes in shield attitude and the displacement of the thrust vector action point exhibit a mirror-symmetrical relationship, with over 98% of the total segments maintaining horizontal and vertical attitude control within the target range of ±10 mm across individual sections.

Key words: existing shield machines, intelligent transformation, automatic tunneling, thrust vector, engineering application