• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (9): 1719-1727.DOI: 10.3973/j.issn.2096-4498.2025.09.009

• 地质与勘察 • 上一篇    下一篇

基于水平定向钻的隧道地质精细化探测技术应用

刘继国1, 2, 刘夏临1, 2, *, 魏龙海1, 2, 宋宇家1, 2   

  1. (1. 中交第二公路勘察设计研究院有限公司, 湖北 武汉 430056; 2. 中交集团隧道与地下空间工程技术研发中心, 湖北 武汉 430056)
  • 出版日期:2025-09-20 发布日期:2025-09-20
  • 作者简介:刘继国(1976—),男,内蒙古商都人,2019年毕业于中国地质大学(武汉),隧道工程专业,博士,正高级工程师,现从事隧道与地下工程科研与设计工作。E-mail: liujiguogg@163.com。*通信作者: 刘夏临, E-mail: 745786066@qq.com。

Application of Horizontal Directional Drilling-Based Refined Tunnel Geological Investigation

LIU Jiguo1, 2, LIU Xialin1, 2, *, WEI Longhai1, 2, SONG Yujia1, 2   

  1. (1. CCCC Second Highway Consultant Co., Ltd., Wuhan 430056, Hubei, China; 2. CCCC Tunnel and Underground Space Engineering Technology R&D Center, Wuhan 430056, Hubei, China)
  • Online:2025-09-20 Published:2025-09-20

摘要: 针对复杂地形地质与长大深埋隧道超前地质信息获取难的问题,结合天山胜利隧道工程条件,设计并实施基于水平定向钻(HDD)的1 000 m超前地质预报应用研究,形成“HDD+孔内多源测试(取心、孔内电视、综合测井)+钻进参数分析”一体化流程。现场采用C4S1000钻机及随钻导向、泥浆循环与孔内测试系统,完成轨迹导向控制; 钻进过程中采集泥浆压力、流量、钻压、钻速、转速与转矩等参数,计算机械比能用于表征围岩强度与裂隙发育。结合测井参数与室内抗压强度,计算岩体基本质量指标(BQ值)并划分围岩级别,形成可服务于施工组织与风险管控的参数集与分级成果。结果表明: 1)建立的“HDD+孔内多源测试+钻进参数分析”一体化流程在隧道内运行稳定,完成1 000 m导向钻进与数据获取; 2)钻孔轨迹满足导向精度与避让控制要求,设计最大空间偏距为10.161 m; 3)机械比能与围岩强度变化具有一致性,0~200 m为低值段,>300 m整体抬升,612 m处达9.68 MPa,可用于识别强度变化与潜在风险段; 4)基于测井数据计算的BQ围岩分级与掌子面揭示情况及既有勘察总体一致,支撑施工组织与风险管控,验证了HDD在隧道工程中的适用性与有效性。

关键词: 隧道工程, 超前地质预报, 水平定向钻, 机械比能, 综合测井, 围岩分级

Abstract: Geological information is difficult to acquire when using advance geological prediction in long, deep-buried tunnels with complex terrains. To address this issue, a 1-km horizontal directional drilling (HDD)-based advance geological prediction is designed and implemented in the Tianshan Shengli tunnel, forming an integrated workflow that combines HDD, downhole multi-source testing (coring, borehole TV, and comprehensive logging), and drilling parameter analysis. In the field, a C4S1000 rig and systems for while-drilling guidance, mud circulation, and downhole testing achieve trajectory control. During drilling, mud pressure, flow rate, weight-on-bit, penetration rate, bit rotation speed, and torque are recorded, and mechanical specific energy (MSE) is computed to indicate rock strength and jointing. Based on logging parameters and laboratory uniaxial compressive strength, the basic quality (BQ) index of the rock mass is calculated, and rock mass classes are assigned. These yield a parameter dataset and classification results that support construction organizations and risk management. The results show the following: (1) The integrated workflow operates stably in the tunnel, successfully drilling for 1 km while acquiring data. (2) The drilling trajectory meets control requirements, creating a maximum spatial offset of 10.161 m. (3)MSE trends are consistent with variations in rock strength, exhibiting a three-stage development: a low-value section from 0 to 200 m, an overall lifting section of >300 m, and a value of 9.68 MPa at 612 m. This development can identify strength variation and potential risks. (4) The BQ-based rock classes derived from logging agree well with the conditions revealed on the tunnel face. These results verify the engineering applicability and effectiveness of HDD for tunnel engineering and provide a reference for similar projects.

Key words: tunnel engineering, advance geological prediction, horizontal directional drilling, mechanical specific energy, comprehensive logging, rock-mass classification