- CSCD核心中文核心科技核心
- RCCSE(A+)公路运输高质量期刊T1
- Ei CompendexScopusWJCI
- EBSCOPж(AJ)JST

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (S1): 136-145.DOI: 10.3973/j.issn.2096-4498.2025.S1.015
王芝茏1, 2, 杨文波1, 2, *, 寇昊1, 2, 赵亮亮1, 2, 曾泽润3, 吴枋胤1, 2
WANG Zhilong1, 2, YANG Wenbo1, 2, *, KOU Hao1, 2, ZHAO Liangliang1, 2, ZENG Zerun3, WU Fangyin1, 2
摘要: 为掌握隧道结构在山区环境中的安全状态,提出一种基于多准则妥协解排序法(VIKOR)决策模型和麻雀搜索算法(SSA)优化极限学习机(ELM)算法的山区隧道结构安全评价方法。通过调研山区隧道结构安全影响因素的文献,建立山区隧道结构安全的评语集、指标体系与指标基准;利用群体决策层次分析法(AHP)、熵权法(EWM)+CRITIC法和博弈论对评价指标进行权重计算;采用VIKOR决策模型对隧道结构安全等级进行量化,并将使用MATLAB生成的构造样本转化为用于机器学习训练的训练样本;根据参数寻优的结果,构建SSA-ELM模型,并收集48个已进行现场勘察并确定安全等级的工程实例样本进行安全预测,同时与未优化的ELM和运用粒子群算法(PSO)优化的ELM模型进行对比分析。结果表明,SSA-ELM模型的预测准确率更高。