• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (S1): 136-145.DOI: 10.3973/j.issn.2096-4498.2025.S1.015

• 研究与探索 • 上一篇    下一篇

基于VIKOR-SSA-ELM的山区隧道结构安全评价方法

王芝茏1, 2, 杨文波1, 2, *, 寇昊1, 2, 赵亮亮1, 2, 曾泽润3, 吴枋胤1, 2   

  1. 1. 极端环境岩土和隧道工程智能建养全国重点实验室, 四川 成都 6100312. 西南交通大学土木工程学院, 四川 成都 610031; 3. 中国建设基础设施有限公司, 北京 100029
  • 出版日期:2025-07-15 发布日期:2025-07-15
  • 作者简介:王芝茏(1999—),男,四川宜宾人,西南交通大学桥梁与隧道工程专业在读硕士,研究方向为隧道结构安全评价。E-mail: bigd@my.swjtu.edu.cn。 *通信作者: 杨文波, E-mail: yangwenbo1179@hotmail.com。

Safety Evaluation Method for Mountainous Tunnel Structures Based on Multi-Criteria Compromise Solution Sorting-Sparrow Search Algorithm-Extreme Learning Machine Model

WANG Zhilong1, 2, YANG Wenbo1, 2, *, KOU Hao1, 2, ZHAO Liangliang1, 2, ZENG Zerun3, WU Fangyin1, 2   

  1. (1. State Key Laboratory of Intelligent Geotechnics and Tunnelling, Chengdu 610031, Sichuan, China; 2. School of Civil Engineering, Southwest of Jiaotong University, Chengdu 610031, Sichuan, China; 3. China Construction Infrastructure Co., Ltd., Beijing 100029, China)
  • Online:2025-07-15 Published:2025-07-15

摘要: 为掌握隧道结构在山区环境中的安全状态,提出一种基于多准则妥协解排序法(VIKOR)决策模型和麻雀搜索算法(SSA)优化极限学习机(ELM)算法的山区隧道结构安全评价方法。通过调研山区隧道结构安全影响因素的文献,建立山区隧道结构安全的评语集、指标体系与指标基准;利用群体决策层次分析法(AHP)、熵权法(EWM)+CRITIC法和博弈论对评价指标进行权重计算;采用VIKOR决策模型对隧道结构安全等级进行量化,并将使用MATLAB生成的构造样本转化为用于机器学习训练的训练样本;根据参数寻优的结果,构建SSA-ELM模型,并收集48个已进行现场勘察并确定安全等级的工程实例样本进行安全预测,同时与未优化的ELM和运用粒子群算法(PSO)优化的ELM模型进行对比分析。结果表明,SSA-ELM模型的预测准确率更高。

关键词: 山区隧道, 隧道结构安全评价, 博弈论, 多准则妥协解排序法, 麻雀搜索算法, 极限学习机

Abstract: Herein, a safety evaluation method of mountainous tunnel structures is established using an extreme learning machine (ELM) improved by multi-criteria compromise solution sorting method (VIKOR) and sparrow search algorithm (SSA). Previous researches on the influencing factors of tunnel structure safety in mountainous areas are analyzed to build an evaluation set, indicator system, and benchmarks for the safety of tunnel structures in mountainous areas.  Then, the analytic hierarchy process, entropy weight method + criteria importance through intercriteria correlation method, and game theory are employed to calculate the weights of evaluation indicators. The VIKOR decision model is adopted to quantify the safety levels of tunnel structures, and the constructed samples generated by MATLAB are transformed into training samples for machine learning. Based on the parameter optimization results, an SSA-ELM model is constructed, and 48 engineering instance samples, which had undergone field surveys and safety level determinations, are collected for simulation prediction. Comparative analysis is conducted with the original ELM and the particle warm optimization algorithm-optimized ELM model. The results indicate that the SSA-ELM model has higher prediction accuracy.

Key words: mountainous tunnel, tunnel structure safety evaluation, game theory, multi-criteria compromise solution sorting method, sparrow search algorithm, extreme learning machine