• 中国科学引文数据库(CSCD)来源期刊
  • 中文核心期刊中文科技核心期刊
  • Scopus RCCSE中国核心学术期刊
  • 美国EBSCO数据库 俄罗斯《文摘杂志》
  • 《日本科学技术振兴机构数据库(中国)》
二维码

隧道建设(中英文) ›› 2022, Vol. 42 ›› Issue (6): 984-993.DOI: 10.3973/j.issn.2096-4498.2022.06.006

• 研究与探索 • 上一篇    下一篇

隧道穿越富水断层隔水岩体冲切剪切破坏研究

孙希波1, 刘宏翔2, 李鹏飞2 *, 郭彩霞2   

  1. 1. 北京市轨道交通建设管理有限公司, 北京 100068; 2. 北京工业大学 城市与工程安全减灾教育部重点实验室, 北京 100124)

  • 出版日期:2022-06-20 发布日期:2022-07-05
  • 作者简介:孙希波(1970—),男,山东淄博人,1994年毕业于南京建筑工程学院,工程地质与水文地质专业,本科,高级工程师,主要从事轨道交通勘察设计、科研管理工作。E-mail: 651131688@qq.com。*通信作者: 李鹏飞, E-mail: lpfei@foxmail.com。

Punching Shear Failure of WaterResistant Rock Mass of Tunnel Crossing WaterRich Fault

SUN Xibo1, LIU Hongxiang2, LI Pengfei2, *, GUO Caixia2   

  1. (1. Beijing Rail Transit Construction Management Co., Ltd., Beijing 100068, China; 2. Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China)

  • Online:2022-06-20 Published:2022-07-05

摘要:

隧道在修建过程中不可避免会遇到富水断层等不良地质情况,极易引发突水突泥灾害,若能提前预测隔水岩体的最小安全厚度,则能有效避免灾害的发生。首先,以隧道穿越富水断层为背景,提出冲切剪切破坏模式的隔水岩体计算模型,得到最小安全厚度计算公式并进行影响因素分析; 然后,采用FLAC3D软件建立三维数值模型,确定最小安全厚度的模拟解,并与理论解进行对比;最后,将计算公式应用于永莲隧道以验证其适用性。结果表明: 1)最小安全厚度随断层宽度、隧道半径、水头高度的增大而增大,随断层倾角、隔水岩体内摩擦角及黏聚力的增大而减小; 2)模拟解与理论解较为吻合,且模拟得到掌子面附近围岩的移动态势与理论模型假定的破坏体运动方向一致; 3)计算公式能较为准确地预测隧道穿越富水断层时的隔水岩体最小安全厚度。

关键词:

隧道工程, 富水断层, 隔水岩体, 冲切剪切破坏, 最小安全厚度, 数值模拟

Abstract:

During tunnel construction, it is inevitable to encounter bad geological conditions, e.g., waterrich faults, which can cause water and mud inrush disasters. However, such disasters can be avoided if the minimum safe thickness of the waterresistant rock mass can be predicted. Thus, in this paper, based on a tunnel crossing waterrich fault, a calculation model for waterresistant rock mass with punching shear failure mode is proposed, the calculation formula of the minimum safe thickness is obtained, and influencing factors are analyzed. A threedimensional numerical model is established using the FLAC3D software to determine the simulation solution for the minimum safe thickness. Finally, the calculation formula is applied to the Yonglian tunnel to verify its applicability. The results demonstrate the following: (1) The minimum safety thickness increases with increasing fault width, tunnel radius, and water head height, and it decreases with increasing fault inclination, internal friction angle, and waterresistant rock mass cohesion. (2) The simulated and theoretical solutions are in good agreement, and the movement trend of surrounding rock near the tunnel face is consistent with the movement direction of the damaged rock mass assumed by the theoretical model. (3) The calculation formula can accurately predict the minimum safe thickness of a waterresistant rock mass when the tunnel passes through a waterrich fault.

Key words: tunnel engineering, waterrich fault, waterresistant rock mass, punching shear failure, minimum safe thickness, numerical simulation