• 中国科学引文数据库(CSCD)来源期刊
  • 中文核心期刊中文科技核心期刊
  • Scopus RCCSE中国核心学术期刊
  • 美国EBSCO数据库 俄罗斯《文摘杂志》
  • 《日本科学技术振兴机构数据库(中国)》
二维码

隧道建设(中英文) ›› 2023, Vol. 43 ›› Issue (11): 1887-1895.DOI: 10.3973/j.issn.2096-4498.2023.11.008

• 研究与探索 • 上一篇    下一篇

吸收式制冷系统应用于高温热害隧道降温的理论分析研究

覃宇含1, 孟祥林2, 苏留锋2, 孙亮亮1, *, 袁艳平1   

  1. 1. 西南交通大学机械工程学院, 四川 成都 610031 2. 西南交通大学 交通隧道工程教育部重点实验室, 四川 成都 610031)

  • 出版日期:2023-11-20 发布日期:2023-12-08
  • 作者简介:覃宇含(1998—),女,湖北恩施人,西南交通大学供热供燃气通风及空调工程专业在读硕士,主要研究方向为吸收式制冷系统。 E-mail: Qinyuhan@my.swjtu.edu.cn。 *通信作者: 孙亮亮, E-mail: sunliangliang@swjtu.edu.cn。

Theoretical Analysis of Absorption Refrigeration System for Treating High Temperature Heat Damage in Tunnels

QIN Yuhan1, MENG Xianglin2, SU Liufeng2, SUN Liangliang1, *, YUAN Yanping1   

  1. (1. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China;2. Key Laboratory of Transportation Tunnel Engineering, the Ministry of Education, Southwest Jiaotong University,Chengdu 610031, Sichuan, China)

  • Online:2023-11-20 Published:2023-12-08

摘要: 为解决高地温隧道施工过程中出现的热害问题,利用隧道施工过程中出现的高温涌水作为吸收式制冷系统的热源,驱动溴化锂吸收式制冷机组工作产生冷冻水,通过空冷器释放冷量,作为隧道施工降温辅助措施。提出一个新的热害资源利用方法——利用高温涌水驱动吸收式制冷循环并服务于自身隧道降温,该方法适用于施工过程中遭遇高水温的隧道。基于能量守恒和质量守恒原理对循环的各个部件建立热力学模型,借助EES数值模拟平台对单效溴化锂吸收式制冷循环和2级溴化锂吸收式制冷循环的运行性能进行计算和分析。结果表明: 1)当蒸发温度为5 ℃时,可以利用60 ℃以上的隧道涌水作为热源驱动吸收式制冷系统。2)提高蒸发温度、降低冷凝温度,系统能够在更低的热源温度下启动,从而能够利用温度更低的隧道涌水作为热源驱动吸收式制冷系统。3)当蒸发温度提高至15 ℃时,可以利用50 ℃以上的隧道涌水作为热源驱动吸收式制冷系统,从理论上分析了隧道高温涌水作为热源驱动溴化锂吸收式制冷系统的可行性。4)根据隧道涌水温度能够匹配对应的吸收式制冷系统,当隧道涌水温度在50~63 ℃时,可以采用2级溴化锂吸收式制冷系统;当隧道涌水温度在63 ℃以上时,可以采用单效溴化锂吸收式制冷系统。

关键词: 吸收式制冷系统, 高温热害, 隧道高温涌水, 数值模拟, 稳态, 性能分析

Abstract:

 To mitigate or prevent high temperature heat damage during tunnel construction in areas with elevated ground temperatures, an auxiliary tunnel cooling measure that utilizes high temperature gushed water to drive an absorption refrigeration system and ultimately producing frozen water is proposed. Thermodynamic models for each component of the refrigeration system are formulated based on the principles of energy conservation and mass conservation. The Engineering Equation Solver numerical simulation platform is employed to calculate and analyze the performance of both singleeffect and twostage lithium bromide absorption refrigeration systems. Results are as follows: (1) The absorption refrigeration system can be driven by water with a temperature exceeding 60 when the evaporation temperature is maintained at 5 . (2) Adjusting the evaporation temperature and reducing the condensation temperature enables the system to be powered by a heat source with a lower temperature, facilitating the use of gushed water at a lower temperature. (3) At an evaporation temperature of 15 , the absorption refrigeration system remains operable with water temperatures exceeding 50 , and a theoretical analysis supporting the feasibility of using high temperature gushed water to drive the lithium bromide absorption refrigeration system is proposed. (4) For gushed water temperatures in the range of 50 ~63 within the tunnel, a twostage lithium bromide absorption refrigeration system is suitable, whereas temperatures exceeding 63 warrant the use of a singleeffect lithium bromide absorption refrigeration system.

Key words: absorption refrigeration system, high temperature heat damage, high temperature water gushing in tunnel, numerical simulation, steady state, performance analysis