• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (5): 1012-1028.DOI: 10.3973/j.issn.2096-4498.2024.05.010

• 研究与探索 • 上一篇    下一篇

基于VMD与加权RFTBM掘进速度预测SHAP解释模型

张建明1, 2, 3, 侍克斌2, 3, *, 贾运甫1, 任志强4, 巴合特别克·达拉依汗4, 刘昭4   

  1. 1. 新疆水利水电勘测设计研究院有限责任公司, 新疆 乌鲁木齐 830000 2. 新疆农业大学水利与土木工程学院, 新疆 乌鲁木齐 830052; 3. 新疆水利工程安全与水灾害防治重点实验室,新疆 乌鲁木齐 830052; 4. 新疆水发建设集团有限公司, 新疆 乌鲁木齐 830063)

  • 出版日期:2024-05-20 发布日期:2024-06-22
  • 作者简介:张建明(1999—),男,新疆哈密人,新疆农业大学水利工程专业在读硕士,研究方向为超长隧洞施工规划及技术。 Email: zjmchnxj@163.com。 *通信作者: 侍克斌, Email: xndsg@sina.com。

Shapley Additive Explanations Interpretation Model for Penetration Rate Prediction of Tunnel Boring Machines Based on Variational 

Mode Decomposition and Weighted Random Forest

ZHANG Jianming1, 2, 3, SHI Kebin2, 3, *, JIA Yunfu1, REN Zhiqiang4, BAHETEBIEKE Dalayihan4, LIU Zhao   

  1. (1. Xinjiang Water Conservancy and Hydropower Survey Design Institute Co., Ltd., Urumqi 830000, Xinjiang, China; 2. College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China; 3. Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disaster Prevention, Urumqi 830052, Xinjiang, China; 4. Xinjiang Shuifa Construction Group Co., Ltd., Urumqi 830063, Xinjiang, China)

  • Online:2024-05-20 Published:2024-06-22

摘要: 为较准确地实现TBM掘进速度(PR)的预测,构建一套基于加权随机森林(RF)结合变分模态分解(VMD)的集成学习预测模型。模型建立过程中,通过收集来自KS隧洞与兰州水源地输水隧洞中涵盖不同岩性下的数据,利用VMD对数据进行4次模态分解,在保留数据特性的同时去除最高频噪音;采用SHAP对未加权传统RF从模型贡献角度进行特征度量,以此实现未加权传统RF加权,并使用RFECV与网格搜索对加权RF进行特征遴选、超参数优化;通过实际工程对模型的性能进行验证,基于SHAP理论对模型从全局与局部进行解释。结果表明: 1)所建模型预测精度较高,其在测试集上的均方根误差(MSE)、平均绝对误差(MAE)与决定系数(R2)分别为0.064 9 (m/h)20.187 5 m/h0.925 42)在实际工程的验证中,模型取得了MSE=0.050 3 (m/h)2、MAE=0.161 3 m/h、R2=0.950 5的性能表现,精度理想,且性能均高于常用的深度神经网络、支持向量回归、未加权传统RF3)经过VMD处理可有效提升PR的预测精度,处理后的模型在测试集上MSEMAE、R2分别提升了82.50%59.00%33.25%4)岩石单轴抗压强度是精准预测PR时最重要的因素,地质参数在预测中的交互性明显优于掘进参数。预测分析重要洞段的PR时,需结合全局与局部2个角度进行综合分析。

关键词: TBM隧道, TBM掘进性能, 净掘进速度预测, 变分模态分解, 随机森林

Abstract:

A predictive model integrating weighted random forest(RF) and variational mode decomposition(VMD) is constructed to accurately predict the penetration rate(PR) of tunnel boring machines (TBMs). Data from the KS tunnel and the water conveyance tunnel in the Lanzhou water source area, encompassing various lithologies, are collected and decomposed four times using VMD to eliminate highfrequency noise while preserving data characteristics. The traditional RF models feature contributions are assessed using Shapley additive explanations(SHAP), facilitating the application of weighted RF. Feature selection and hyperparameter optimization for the weighted RF are achieved through recursive feature elimination with crossvalidation and grid search. The models performance is validated in practical engineering settings, and it is explained both globally and locally based on SHAP theory. The results indicate: (1) High prediction accuracy with mean square error(MSE), mean absolute error(MAE), and determination coefficient(WT5《TNR#I》〗RWT5《TNR》〗2) of 0.064 9 (m/h)2, 0.187 5 m/h, and 0.925 4, respectively. (2) In practical engineering applications, the MSE, MAE, and WT5《TNR#I》〗RWT5《TNR》〗2 are 0.050 3 (m/h)2, 0.161 3 m/h, and 0.950 5, respectively, demonstrating superior accuracy and performance compared to commonlyused deep neural networks, support vector regression, and unweighted RF. (3) VMD processing enhances PR prediction accuracy, showing improvements in MSE, MAE, and WT5《TNR#I》〗RWT5《TNR》〗2 by 82.50%, 59.00%, and 33.25%, respectively. (4) The uniaxial compressive strength of rock is crucial for accurate PR prediction, and the interaction of geological parameters significantly outperforms that of tunneling parameters. For comprehensive analysis in critical tunnel sections, both global and local perspectives should be considered.

Key words: tunnel boring machine (TBM) tunnel, TBM tunneling performance, net penetration rate prediction, variational mode decomposition, random forest