• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (3): 567-578.DOI: 10.3973/j.issn.2096-4498.2025.03.012

• 研究与探索 • 上一篇    下一篇

软土地区装配式悬吊下沉竖井施工引起的地层变形研究——以上海某连通管工作井为例

方歆1, 刘陕南1 *, 彭夏军2   

  1. (1. 上海工程技术大学城市轨道交通学院, 上海 201620; 2. 上海市政工程设计研究总院(集团)有限公司, 上海 200092)
  • 出版日期:2025-03-20 发布日期:2025-03-20
  • 作者简介:方歆(2000—),男,上海人,上海工程技术大学交通运输专业在读硕士,研究方向为装配式悬吊下沉竖井工法对周边环境影响控制。E-mail: 1070748935@qq.com。*通信作者: 刘陕南, E-mail: shannan611@qq.com。

Strata Deformation Caused by Construction of Prefabricated Suspended Sinking Shafts in Soft Soil Areas: A Case Study of a Working Shaft of a Connecting Pipe in Shanghai, China

FANG Xin1, LIU Shannan1, *, PENG Xiajun2   

  1. (1. College of Urban Railway Transportation, Shanghai University of Engineering Science, Shanghai 201620, China; 2. Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai 200092, China)

  • Online:2025-03-20 Published:2025-03-20

摘要: 为分析复杂环境条件下装配式悬吊下沉竖井工法周边地层变形规律以及各施工参数变化对地层变形的影响,依托竹园白龙港污水连通管工程建立三维有限元模型,对其开挖下沉全过程进行数值模拟,系统分析该工法施工过程中对地层变形的影响,并基于参数敏感性分析理论,得到土体最大变形对各施工参数的敏感度。分析结果表明: 1)装配式悬吊下沉竖井工法的地表最大沉降远小于软土地区传统压入式沉井工法的地表最大沉降,也小于上海一级基坑环境保护等级规定的地表最大沉降控制指标,适用于软土地区对地层变形控制要求较高的竖井工程。2)装配式悬吊下沉竖井工法的地表沉降形态随着开挖深度的增加,逐渐由三角形转变为凹槽形; 而土体深层最大水平位移始终发生在软弱土层处。3)在竹园白龙港工程17#井直径条件下,地表沉降影响范围为1.0H~1.4HH为开挖深度),远小于软土地区基坑工程地表沉降影响范围。4)在竖井直径及一些主要施工参数中,泥浆液面高度和泥浆重度对土体变形的影响相较于其他施工参数更为显著,尤其是对于大直径竖井,对泥浆重度的控制应更为严格,并同时提高泥浆液面高度以减小对周边地层变形的影响。

关键词: 装配式悬吊下沉竖井工法, 数值分析, 敏感性分析, 土体变形

Abstract: The authors conduct a case study on the Zhuyuan Bailonggang sewage connecting pipe project in Shanghai, China, to examine the deformation patterns of the surrounding strata induced by the construction of a prefabricated suspended sinking shaft under complex environmental conditions. They also examine how varying construction parameters influence strata deformation. Additionally, a three-dimensional finite element model is established to simulate the shaft sinking process, enabling a systematic analysis of its effects on strata deformation. Furthermore, parameter sensitivity analysis is employed to determine the sensitivity of maximum soil deformation to various construction parameters. The results reveal the following: (1) The maximum surface settlement in soft soils induced by the construction of prefabricated suspended sinking shafts in soft soils is significantly smaller than that associated with the traditional press-in caisson method. The settlement remains well within the allowable limits for foundation pits under Shanghais first-class environmental protection standard. This demonstrates the suitability of this method for shaft engineering in soft soil areas with stringent requirements for stratum deformation control. (2) The surface settlement pattern transitions from a triangle to a groove shape with increasing sinking depth. The maximum horizontal displacement in the deep soil primarily occurs within weak soil layers. (3) Under the shaft diameter conditions of this project, the influence range of surface settlement is approximately 1.0H1.4H (H refers to excavation depth). This range is considerably smaller than that typically observed in foundation pit projects in soft soil areas. (4) Among the construction parameters, the slurry level and slurry unit weight exert the most significant influence on soil deformation. For large-diameter shafts, the slurry unit weight should be rigidly controlled. Meanwhile, the slurry level can be raised to minimize the influence on the deformation of the surrounding strata.

Key words: prefabricated suspended sinking shaft construction method, numerical analysis, sensitivity analysis, soil deformation