• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (4): 677-686.DOI: 10.3973/j.issn.2096-4498.2025.04.002

• 研究与探索 • 上一篇    下一篇

基于数据驱动的超大直径泥水盾构岩机作用载荷研究

洪开荣1, 2, 3, 王凯1, 2, 3*, 李站国1, 2, 3, 陈瑞祥1, 2, 3, 李凤远1, 2, 3, 陈桥1, 2, 3秦银平1, 2, 3   

  1. 1. 隧道掘进机及智能运维全国重点实验室, 河南 郑州 4500012. 中铁隧道局集团有限公司, 广东 广州 511458 3. 盾构及掘进技术国家重点实验室, 河南 郑州 450001
  • 出版日期:2025-04-20 发布日期:2025-04-20
  • 作者简介:洪开荣(1965—),男,湖南株洲人,1990年毕业于兰州铁道学院,桥梁与地下工程专业,博士,教授级高级工程师,现从事隧道与地下工程设计、施工、科研及管理工作。隧道掘进机及智能运维全国重点实验室主任,中原学者,国家“万人计划”科技创新领军人才,国务院政府特殊津贴专家。E-mail: ctg_kr@vip.163.com。 *通信作者: 王凯, E-mail: wangkai3188@126.com。

Interaction Load Between Rock and Super-Large Diameter Slurry Shield Based on Data-Driven Method

HONG Kairong1, 2, 3, WANG Kai1, 2, 3, *, LI Zhanguo1, 2, 3, CHEN Ruixiang1, 2, 3, LI Fengyuan1, 2, 3, CHEN Qiao1, 2, 3, QIN Yinping1, 2, 3   

  1. (1. State Key Laboratory of Tunnel Boring Machine and Intelligent Operation and Maintenance, Zhengzhou 450001, Henan, China; 2. China Railway Tunnel Group Co., Ltd., Guangzhou 511458, Guangdong, China; 3. State Key Laboratory of Shield Machine and Boring Technology, Zhengzhou 450001, Henan, China)
  • Online:2025-04-20 Published:2025-04-20

摘要: 盾构岩机作用载荷(盾构推力、刀盘转矩)对于装备设计、现场施工等尤为重要,但现有理论或统计模型参数多、计算繁杂,为提升盾构数字化设计、数字孪生水平,高效精准地进行载荷赋值仍需探索。针对已有机器学习算法重视各地层比例与力学参数等,却忽视地层空间位置关系的现状,融合图像、数据序列进行多特征信息表征,提出一种基于卷积神经网络(CNN)、双向长短期记忆(BiLSTM)与注意力机制(Attention)的数据驱动型超大直径泥水盾构岩机作用载荷预测方法。首先,利用K-means算法对地质纵剖面图进行地层信息提取并切片,对切片图像进行CNN特征提取,结合装备运行数据形成多特征融合数据集;其次,采用BiLSTM网络提取输入特征的双向时序信息,以注意力机制为后续特征进行权重再分配;最后,利用灰狼优化算法(gray wolf optimizer,GWO)对深度学习网络超参数寻优。研究结果表明: GWO-CNN-BiLSTM-Attention模型相比BPBP 神经网络)、PSO-BP(粒子群优化的BP神经网络)、LSTM(长短期记忆网络)对盾构推力、刀盘转矩的预测效果更佳,R2均超过0.9,平均相对误差<1%;由于融入了地层位置信息,模型对岩机作用载荷问题具有更强的适用性。

关键词: 超大直径泥水盾构, 岩机作用, 载荷, 数据驱动, 多特征, 灰狼优化算法

Abstract: Interaction loads (shield thrust and cutterhead torque) between rock and shield are essential for equipment design and tunneling efficiency. Existing theoretical and statistical models involve numerous parameters and are computationally cumbersome. Further research is required to improve the efficiency and accuracy of load assignment in the digital design and digital twin of the shield. Although machine learning algorithms emphasize the proportion and mechanical parameters of geological formation, they often overlook the spatial relationships of strata. To address this, a data-driven load prediction method is proposed between rock and machine interaction based on a convolutional neural network (CNN), a bidirectional long short-term memory (BiLSTM), and an attention mechanism to characterize multifeature information from images and data sequences. First, the K-means algorithm is employed to extract and slice the geological longitudinal profile. Features are extracted from the sliced images using CNN, and a multifeature fusion dataset is formed by combining equipment operation data. Second, the BiLSTM network is employed to extract bidirectional time series information of the input features, and the attention mechanism is used to redistribute the weights of subsequent features. Finally, the grey wolf optimizer is used to optimize the hyper parameters of the deep learning network. The results indicate that the GWO-CNN-BiLSTM-Attention model exhibits better predictive performance for shield thrust and cutterhead torquewith R2 values exceeding 0.9 and an average relative error below 1%than the BP, PSO-BP, and LSTM models. By incorporating geological spatial information, the proposed model offers improved applicability for load prediction in rock-machine interactions.

Key words: super-large diameter slurry shield; interaction between rock and machine, load, data driven, multifeature, grey wolf optimizer