• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文)

• • 上一篇    下一篇

斜井热位差影响下的公路隧道施工通风优化研究——以中梁山施工瓦斯隧道为例

杨乾1,李建铭2,胡彪1,张学富2,熊成余1,李林杰2,*   

  1. (1. 中交一公局第四工程有限公司,广西 南宁 530000; 2. 重庆交通大学,重庆 400074)
  • 出版日期:2025-06-27 发布日期:2025-06-27
  • 作者简介:杨乾(1979—),男,贵州德江人,2002年毕业于重庆交通大学,土木工程(公路与城市道路)专业,本科,高级工程师。现从事路桥施工工作。E-mail: 657058690@qq.com。 *通信作者:李林杰,E-mali:lilj@cqjtu.cn。

Research on the Optimization of Ventilation for Highway Tunnel Construction Affected by Thermal Gradient in Inclined Shafts in Zhongliangshan Construction of Gas Tunnel

YANG Qian1,LI Jianming2,HU Biao1,ZHANG Xuefu2,XIONG Chengyu1,LI Linjie2, *   

  1. (1. The Fourth Engineering CO., Ltd. of CCCC First Highway Engineering CO., Ltd., Nanning 530000, Guangxi, China; 2. Chongqing Jiaotong University, Chongqing 400074, China)
  • Online:2025-06-27 Published:2025-06-27

摘要: 为探究利用斜井热位差优化公路隧道施工通风的方法,提高隧道施工的安全性,本研究以重庆市北碚区中梁山某施工瓦斯隧道为例,采用了理论分析与数值模拟相结合的方法进行研究。首先分析了隧道内外温差及斜井坡度引起的热位差对隧道通风的影响,计算了夏季和冬季热位差产生的压强差,并据此分析了自然风在斜井内的流动趋势。随后建立了隧道数值模型,模拟了不同工况下隧道内部的风速、风向、通风死区以及瓦斯浓度的分布情况。研究结果表明,热位差对隧道内的通风性能具有显著影响。在夏季,当热位差引起的自然风与射流风机风向相冲突时,会导致隧道内形成通风死区,降低通风效率,不利于瓦斯的排出。在此基础上,提出了结合自然风与机械通风协同作用的通风优化方案,充分利用斜井热位差进行通风,显著提升风速和通风效率。优化后,斜井风速随着热位差的增大而增加。同时,隧道整体平均风速也有所提升,通风死区体积大幅减少,平均瓦斯浓度降低,显著提高了施工瓦斯隧道的安全性。

关键词: 隧道通风, 热位差, 数值模拟, 瓦斯浓度, 通风效率

Abstract: In order to explore the method of optimizing the ventilation of highway tunnel construction by using the thermal potential difference of inclined shaft and improve the safety of tunnel construction, this study took a construction gas tunnel in Zhongliangshan, Beibei District, Chongqing as an example, and adopted a combination of theoretical analysis and numerical simulation. Firstly, the influence of the temperature difference between the inside and outside of the tunnel and the thermal potential difference caused by the slope of the inclined shaft on the tunnel ventilation was analyzed, and the pressure difference caused by the thermal potential difference between summer and winter was calculated, and the flow trend of natural wind in the inclined shaft was analyzed accordingly. Subsequently, a numerical model of the tunnel was established to simulate the distribution of wind speed, wind direction, ventilation dead zone and gas concentration in the tunnel under different working conditions. The results show that the thermal potential difference has a significant effect on the ventilation performance in the tunnel. In summer, when the natural wind caused by the thermal potential difference conflicts with the wind direction of the jet fan, it will lead to the formation of a ventilation dead zone in the tunnel, reduce the ventilation efficiency, and is not conducive to the discharge of gas. On this basis, a ventilation optimization scheme combining the synergistic effect of natural wind and mechanical ventilation was proposed, which made full use of the thermal potential difference of inclined shafts for ventilation, and significantly improved the wind speed and ventilation efficiency. After
optimization, the wind speed of the inclined well increases with the increase of the thermal potential difference. At the same time, the overall average wind speed of the tunnel has also been improved, the volume of the ventilation dead zone has been greatly reduced, and the average gas concentration has been reduced, which has significantly improved the safety of the construction of the gas tunnel.

Key words: tunnel ventilation, thermal potential difference, numerical simulation, gas concentration, ventilation efficiency