• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (S1): 193-207.DOI: 10.3973/j.issn.2096-4498.2025.S1.020

• 规划与设计 • 上一篇    下一篇

大纵坡小半径螺旋公路隧道几何参数探讨

王建1, 陈炜韬1, 黄鹏1, 张立祥1, 于丽2, 3, 王雪2, 3, *, 刘媛2, 3李俊麒2, 3, 王松4   

  1. (1. 中国电建集团成都勘测设计研究院有限公司, 四川 成都 611130 2. 西南交通大学土木工程学院,四川 成都 610031; 3. 西南交通大学 极端环境岩土和隧道工程智能建养全国重点实验室,四川 成都 610031; 4. 中铁二院工程集团有限责任公司, 四川 成都 610031)

  • 出版日期:2025-07-15 发布日期:2025-07-15
  • 作者简介:王建(1985—), 男, 福建福清人, 2009年毕业于河海大学,桥梁与隧道工程专业,硕士, 高级工程师, 主要从事公路工程设计研究工作。 E-mail: 23190651@qq.com。 *通信作者: 王雪, E-mail: wangxue7@my.swjtu.edu.cn。

Geometric Parameters of Spiral Highway Tunnels With Large Slopes and Small Radius

WANG Jian1, CHEN Weitao1, HUANG Peng1, ZHANG Lixiang1, YU Li2, 3, WANG Xue2, 3, *LIU Yuan2, 3, LI Junqi2, 3, WANG Song4   

  1. (1. PowerChina Chengdu Engineering Corporation Limited, Chengdu 611130, Sichuan, China; 2. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; 3. State Key Laboratory of Intelligent Geotechnics and Tunnelling, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; 4. China Railway Eryuan Engineering Group Co., Ltd., Chengdu 610031, Sichuan, China)

  • Online:2025-07-15 Published:2025-07-15

摘要: 合理的螺旋隧道几何设计参数选取对保证行车安全至关重要。采用资料调研、理论分析等方法,明确隧道线形与事故率关系,研究隧道坡度、坡长和曲率半径的影响因素,分析不同影响因素下的隧道坡度、坡长阈值,并给出大纵坡小半径螺旋隧道的几何设计建议值。结果表明: 1)在纵坡相同情况下,下坡路段比上坡路段更危险,事故率更高; 在同一坡度下,货车受到坡长的影响更大,当隧道曲率半径小于400~600 m时,事故率急速上升。2)隧道坡度的影响因素主要包括机车爬坡性能、爬坡平衡速度、车辆容许爬坡速度和运营通风,坡长的影响因素主要为制动装置温度,曲率半径的影响因素主要包括汽车灯光散射角、视距、横坡、驾驶安全和运营通风。3)基于机车爬坡性能、爬坡平衡速度、车辆容许爬坡速度、运营通风因素,明确大纵坡小半径螺旋隧道的纵坡坡度阈值; 以刹车轮毂温度200 ℃作为控制基准,同时结合安全评价准则,给出不同坡度和设计速度下的隧道坡长阈值; 基于汽车灯光散射角、隧道内的行车视距、隧道内横坡等影响因素,得到大纵坡小半径螺旋隧道的半径阈值。4)根据隧道坡度、坡长、曲线半径阈值,给出隧道可采用的最大纵坡和不同纵坡下的设计速度以及大纵坡小半径螺旋隧道的几何设计建议值。

关键词: 螺旋公路隧道, 线性设计, 坡度, 坡长, 曲线半径, 几何参数设计

Abstract: Rational geometric parameters of spiral highway tunnels are essential for traveling safety of vehicles. Herein, data research and theoretical analysis are employed to establish the relationship between tunnel alignment and accident rates. Then, factors affecting tunnel slope, length, and curvature radius are identified, and the threshold values for slope and slope length under different influencing factors are analyzed. The results show the following: (1) Under the same longitudinal slope, downhill sections exhibit a higher accident rate than uphill sections. Under the same slope, trucks are more affected by slope length, and the accident rate increases sharply when the tunnel′s curvature radius is less than 600 m. (2) The factors affecting tunnel slope primarily include locomotive climbing performance, climbing balance speed, allowable climbing speed, and operational ventilation. The factors affecting slope length is brake temperature, while the factors influencing curvature radius primarily include vehicle headlight scattering angle, sight distance, cross slope, driving safety, and operational ventilation. (3) Based on factors affecting tunnel slope, the threshold for the longitudinal slope of spiral tunnels with large longitudinal slope and small-radius is determined. Using a brake hub temperature of 200 as a control benchmark, and in combination with safety evaluation criteria, tunnel slope length thresholds for different slopes and design speeds are provided. Additionally, based on factors influencing curvature radius, the curvature radius threshold for spiral tunnels with large longitudinal slope and small-radius is established. (4) Based on the threshold values for slope, slope length, and curvature radius, the maximum allowable longitudinal slope, design speeds for different slopes, and geometric design recommendations for spiral tunnels with large longitudinal slope and small-radius are provided.

Key words: spiral highway tunnel, linear design, slope, slope length, curvature radius, geometric parameter design