• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (S1): 270-279.DOI: 10.3973/j.issn.2096-4498.2025.S1.027

• 施工技术 • 上一篇    下一篇

富水砂层盾构开舱修复开挖面垂直和水平联合冻结加固技术

彭新坤1, 梁启帆2 3, 朱碧堂2 3 *, 周宇航2 3, 吴士流1   

  1. 1. 中国建筑第三工程局有限公司, 湖北 武汉 430061 2. 华东交通大学土木建筑学院, 江西 南昌 330013 3. 江西省地下空间技术开发工程研究中心, 江西 南昌 330013
  • 出版日期:2025-07-15 发布日期:2025-07-15
  • 作者简介:彭新坤(1987—),男,湖北仙桃人,2006年毕业于三峡大学,土木工程专业,本科,高级工程师,现从事地下轨道交通管理与研究工作。E-mail: 292829640@qq.com。*通信作者: 朱碧堂, E-mail: btangzh@hotmail.com。

Combined Vertical and Horizontal Freezing Reinforcement for Excavation Face During Shield Chamber Opening and Repair in Water-Rich Sandy Layers

PENG Xinkun1, LIANG Qifan2, 3, ZHU Bitang2, 3, *, ZHOU Yuhang2, 3, WU Shiliu1   

  1. (1. China Construction Third Engineering Bureau Group Co., Ltd., Wuhan 430061, Hubei, China; 2. School of Civil Engineering, East China Jiaotong University, Nanchang 330013, Jiangxi, China, 3. Engineering Research & Development Centre for Underground Technology of Jiangxi Province, Nanchang 330013, Jiangxi, China)
  • Online:2025-07-15 Published:2025-07-15

摘要: 富水砂层地铁隧道盾构掘进过程中,盾构中心回转体出现机械故障,为给开舱检修提供安全的作业环境,提出一种盾构开挖面垂直冻结联合洞内水平冻结的方法,并详细介绍冻结帷幕设计及强度验算、冻结孔及测温孔的布置、冻结施工工艺等; 结合现场测试,详细讨论温度场、土舱内冻胀力的发展过程。结果表明: 1)积极冻结期间各垂直测温孔温度下降趋势大致相同,但不同区域冻土温度下降速率有明显差异,冻结管排内冻土受叠加冷却效应,冻土发展速率是管排外的2.8倍; 2)盾构散热对周围土体降温有显著影响,需加强保温措施,防止冷量的损失; 3)水平冻结管受盾构结构限制,布置数量少且间距大,水平冻结壁的发展速度要小于垂直冻结壁; 4)土舱内测点温度与入土深度呈线性关系,入土深度越大的测温点受土舱面板散热影响越小,降温速率越快。

关键词: 垂直和水平联合冻结, 富水砂层, 冻结壁, 盾构开舱, 温度场, 冻胀力

Abstract: During shield tunneling process of a metro tunnel in water-rich sandy layer,  rotating body of the shield central body mechanically malfunctioned, thus a safe operating environment should be provided for shield chamber opening and repairing. Herein, a combined vertical excavation face freezing and in-tunnel horizontal freezing method is proposed. Additionally, the design and strength recalculation of freezing curtain, layout of freezing and temperature holes, and freezing construction are elaborated. Finally, based on field tests, the development processes of the temperature field and the frost heave force in soil chamber are discussed in detail. The results illustrate the following: (1) Temperature drop trend of each vertical temperature hole is almost the same during active freezing, whereas the freezing temperature drop rates in different areas vary obviously. The freezing development rate of frozen soil in the freezing pipe rows is 2.8 times higher than that outside the rows due to the influence of superimposed cooling effect. (2) The heat dissipation of the shield machine reduces the temperature of surrounding soil body significantly, thus heat preservation measures should be strengthened. (3) Development rate of horizontal freezing wall is slower than that of vertical freezing wall due to less horizontal freezing pipes and large space restricted by the shield structure. (4) The temperature of the measurement point in the soil chamber is linearly related to depth of hole in soil. The larger the depth of hole in soil of the measurement point, the smaller the effect of heat dissipation of the soil chamber panel, and the faster the cooling rate.

Key words: combined vertical and horizontal freezing, water-rich sandy stratum, frozen wall, shield chamber opening, temperature field, frost heave force