• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (11): 2140-2154.DOI: 10.3973/j.issn.2096-4498.2025.11.014

• 研究与探索 • 上一篇    下一篇

内部与地表爆炸作用下装配式框架隧道结构动力响应及抗爆性能

彭正阳1, 黄震1,2,*, 秦茂豇3, 彭子茂4, 胡钊键1   

  1. (1. 广西大学土木工程建筑学院, 广西 南宁 530004; 2. 广西大学 特色金属材料与组合结构全寿命安全国家重点实验室, 广西 南宁 530004; 3. 华润新能源投资有限公司广西分公司, 广西 南宁 530000; 4. 湖南交通职业技术学院建筑工程学院, 湖南 长沙 410132)
  • 出版日期:2025-11-20 发布日期:2025-11-20
  • 作者简介:彭正阳(1999—),男,湖南常德人,广西大学建筑工程学院隧道工程专业在读博士,研究方向为隧道工程。E-mail: 2110391186@st.gxu.edu.cn。 *通信作者: 黄震, E-mail: zhuang@gxu.edu.cn。

Dynamic Response and Blast Resistance Performance of Assembled Frame Tunnel Structures Under Internal and Surface Explosion Effects

PENG Zhengyang1, HUANG Zhen1, 2, *, QIN Maojiang3, PENG Zimao4, HU Zhaojian1   

  1. (1. School of Civil and Architectural Engineering, Guangxi University, Nanning 530004, Guangxi, China; 2. State Key Laboratory of Featured Metal Materials and Life Cycle Safety for Composite Structures, Guangxi University, Nanning 530004, Guangxi, China; 3. Guangxi Branch, China Resources New Energy Investment Co., Ltd., Nanning 530000, Guangxi, China; 4. School of Architectural Engineering, Hunan Communication Engineering Polytechnic, Changsha 410132, Hunan, China)
  • Online:2025-11-20 Published:2025-11-20

摘要: 为解决装配式框架隧道在爆炸荷载作用下的安全评估和抗爆性能不足问题,以装配式框架隧道为研究对象,重点关注其独特的环段连接体系对爆炸响应的影响。考虑内部与地表爆炸2种场景,采用耦合欧拉-拉格朗日算法建立三维精细化数值模型,探究不同炸药当量和不同爆炸位置条件下装配式框架隧道的全过程动力响应规律,分析抗爆防护措施。研究结果表明: 1)装配式框架隧道的损伤特性与爆炸位置密切相关,中央位置爆炸时隧道中隔墙变形显著,边缘位置爆炸时顶板中部挠度最大,且随炸药当量增加,中隔墙破坏模式由弯曲逐渐转变为弯剪结合; 2)地表爆炸时顶板中心区域损伤最大,装配式结构环段间的非连续连接使其在爆炸荷载下易产生滑动切应力和错动变形,呈现出与整体现浇隧道显著不同的响应特征; 3)基于隧道爆炸损伤特性,采用CFRP加固和增设剪力键结构能改善隧道薄弱部位的抗爆性能。

关键词: 装配式框架隧道, 动力响应, 结构损伤, 抗爆性能, 数值模型

Abstract: The authors evaluate the safety and blast resistance performance of assembled frame tunnels subjected to explosive loads by analyzing the influence of their unique segment-connection systems. A three-dimensional refined numerical model is established using a coupled Eulerian-Lagrangian algorithm to simulate internal and surface explosion scenarios. The dynamic responses under varying explosive equivalents and charge positions are examined, and the effectiveness of corresponding protection measures is assessed. The results indicate the following: (1) The damage characteristics of the tunnel closely relate to the explosion position. Central explosions cause pronounced deformation of the middle partition wall, whereas edge explosions produce the maximum deflection at the midspan of the top plate. With increasing explosive equivalent, the failure mode of the middle partition wall transitions from bending to combined bending-shear failure. (2) Surface explosions cause the maximum damage at the center of the top plate. Because the assembled structure contains discontinuous connections between segments, sliding shear stresses and segment misalignment occur under explosive loads, resulting in response characteristics that differ considerably from those of monolithic cast-in-place tunnels. (3) Strengthening vulnerable sections with carbon-fiber-reinforced polymer and additional shear keys improves blast resistance performance.

Key words: assembled frame tunnels, dynamic response, structural damage, blast resistance performance, numerical model