• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (11): 2155-2167.DOI: 10.3973/j.issn.2096-4498.2025.11.015

• 地质与勘察 • 上一篇    下一篇

面向精度优化的SVR-OK三维地质插值建模方法——以深圳市地铁14号线为例

李栋1, 2, 张子溢1,*, 付功云2, 魏子贤2, 董凤翔3, 房倩1   

  1. (1. 北京交通大学土木建筑工程学院, 北京 100044; 2. 中铁第六勘察设计院集团有限公司,天津 300308; 3. 中铁二院工程集团有限责任公司, 四川 成都 610031)
  • 出版日期:2025-11-20 发布日期:2025-11-20
  • 作者简介:李栋(1979—),男,河南扶沟人,北京交通大学智慧建造专业在读博士,教授级高级工程师,主要从事智慧城市、智慧运维产品研发工作。E-mail: 21114119@bjtu.edu.cn。*通信作者: 张子溢, E-mail: 2129601943@qq.com。

Accuracy-Oriented Support Vector Machine-Ordinary Kriging Approach for Three Dimensional Geological Interpolation: A Case Study of Shenzhen Metro Line 14

LI Dong1, 2, ZHANG Ziyi1, *, FU Gongyun2, WEI Zixian2, DONG Fengxiang3, FANG Qian1   

  1. (1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China; 2. China Railway Liuyuan Group Co., Ltd., Tianjin 300308, China; 3. China Railway Eryuan Engineering Group Co., Ltd., Chengdu 610031, Sichuan, China)
  • Online:2025-11-20 Published:2025-11-20

摘要: 为精准刻画三维地质体模型内部空间分布特性,深入探究其复杂结构与物质赋存规律,以超前地质信息力学参数可视化解译为目的,提出一种基于粒子群优化(particle swarm optimization, PSO)算法与支持向量回归(support vector regression, SVR)的普通克里金插值法(ordinary Kriging, OK),并使用一种半均匀网格三维地质建模方法。首先,根据钻孔数据,结合岩性描述、深度信息以及取样位置对三维地质建模区域进行地层划分; 然后,针对地质层面的钻孔稀疏数据,采用普通克里金插值法实现空间属性的最优无偏估计,同时利用支持向量回归模型对高程残差进行校正,并通过粒子群优化算法实现参数优化; 最后,通过三维地质建模算法建立超前地质解译区域内的三维复杂地质体模型。采用该方法可以有效表征地层互层、尖灭等特殊地质现象,满足超前地质信息力学参数解译后内部属性信息三维映射精度的要求。

关键词: 地铁, 三维地质建模, 克里金插值, 支持向量回归, 特殊地质, 粒子群优化算法, Blender可视化平台

Abstract: Given the demands of highly concealed and complex construction and operation, digital intelligent management and control of engineering projects has become an inevitable trend. To accurately characterize the internal spatial distribution of a three-dimensional (3D) geological model, detect its complex structures and material storage rules, and realize visualization interpolation of advance geological information, an ordinary Kriging (OK) interpolation method based on particle swarm optimization (PSO) and support vector regression (SVR) is proposed using a semiuniform grid 3D geological modeling method. First, stratigraphic division of the 3D geological modeling area is performed based on borehole data, lithological descriptions, depth information, and sampling locations. Then, based on sparse borehole data at the geological level, the OK interpolation method is adopted to achieve optimal, unbiased estimation of spatial attributes. Concurrently, an SVR model is used to correct elevation residuals with parameter optimization realized through PSO. Finally, a 3D geological modeling algorithm is employed to construct a 3D complex geological body model in the advance geological interpretation area. This approach effectively characterizes special geological phenomena, such as stratum interbedding and pink-out, while satisfying 3D mapping accuracy requirements for internal attribute information following mechanical parameter interpretation of advance geological information. It lays a foundation for reconstructing 3D geological and tunnel surface models at the engineering regional scale using multisource information and geological constraints and provides visual models for multiregion parallel-solving algorithms tailored to tunnel construction.

Key words: metro, three-dimensional geological modeling, Kriging interpolation, support vector regression, special geology, particle swarm optimization algorithm, Blender visualization platform