- 中国科学引文数据库(CSCD)核心期刊
- 中文核心期刊中文科技核心期刊
- Scopus RCCSE中国权威学术期刊
- 美国EBSCO数据库 俄罗斯《文摘杂志》
- 《日本科学技术振兴机构数据库(中国)》

隧道建设(中英文) ›› 2020, Vol. 40 ›› Issue (8): 1160-1168.DOI: 10.3973/j.issn.2096-4498.2020.08.008
范文超1, 2, 孙振川1, 2, 李凤远1, 2, 张兵1, 2, 陈桥1, 2, 王发民1, 2, 王凯1, 2
FAN Wenchao1, 2, SUN Zhenchuan1, 2, LI Fengyuan1, 2, ZHANG Bing1, 2, CHEN Qiao1, 2, WANG Famin1, 2, WANG Kai1, 2
摘要: 为研究复合地层超大直径泥水盾构掘进参数之间的复杂关系,以汕头海湾隧道工程为背景,选取700环掘进数据,通过优选函数类别和网络结构,建立基于BP神经网络的复合地层超大直径泥水盾构掘进参数预测模型,定量预测刀盘转矩、刀盘能耗和平均泥水压力。研究表明: 1)复合地层盾构贯入度和掘进速度、贯入度和刀盘转速、刀盘电流和刀盘转速的皮氏积矩相关系数绝对值均在0.75以上,具有良好的线性相关性,其他掘进参数之间相关性较不明确; 2)复合地层盾构刀盘转矩和刀盘能耗预测值与实际值的算术平均误差在5%左右,平均泥水压力预测值与实际值的算术平均误差为1.31%,预测精度较高,满足盾构施工要求; 3)基于BP神经网络预测模型,软土地层各掘进参数预测效果得到进一步提升; 4)根据BP神经网络预测模型输入参数定量预测其他掘进参数,操作简单,预测效果良好,能够为盾构主司机提供参考,同时提高施工效率,为实现智能掘进打下基础。
中图分类号: