• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (6): 1210-1218.DOI: 10.3973/j.issn.2096-4498.2025.06.016

• 监控与维护 • 上一篇    下一篇

基于DBN的运营公路隧道火灾后衬砌长期安全状态评估研究

张亚妮1, 2, 刘夏冰2, 3, *, 张彦龙2, 3, 陈劲宇2, 3, 周瑜2, 3   

  1. 1. 广东省交通集团有限公司, 广东 广州 5106232. 广东省隧道工程安全与应急保障技术及装备企业重点实验室, 广东 广州 5104203. 广东华路交通科技有限公司, 广东 广州 510420
  • 出版日期:2025-06-20 发布日期:2025-06-20
  • 作者简介:张亚妮(1988—),女,陕西西安人,2014年毕业于长安大学,桥梁与隧道工程专业,硕士,工程师,主要从事公路隧道技术及安全方面的研究工作。E-mail: 375311710@qq.com。 *通信作者: 刘夏冰, E-mail: 627665303@qq.com。

Long-Term Safety Status Assessment of Operational Highway Tunnel Lining After Breaking Fire Hazard Based on Dynamic Bayesian Network

ZHANG Yani1, 2, LIU Xiabing2, 3, *, ZHANG Yanlong2, 3, CHEN Jinyu2, 3, ZHOU Yu2, 3   

  1. (1. Guangdong Provincial Communications Group Co., Ltd., Guangzhou 510623, Guangdong, China; 2. Guangdong Provincial Key Laboratory of Tunnel Safety and Emergency Support Technology & Equipment, Guangzhou 510420, Guangdong, China; 3. Guangdong Hua-lu Transport Technology Co., Ltd., Guangzhou 510420, Guangdong, China)
  • Online:2025-06-20 Published:2025-06-20

摘要: 运营公路隧道内的火灾事件时有发生,致使衬砌结构持续劣化从而发生安全风险,为准确评估火灾后衬砌结构随运营时间增加而发生的风险事件,建立动态贝叶斯网络(DBN)模型评估火灾后运营公路隧道衬砌结构的长期安全。首先,基于火灾对隧道结构的损伤特点,构建火灾后运营公路隧道衬砌安全状态评价指标体系,获得指标权重表; 然后,采用动态贝叶斯网络建立相应的评估模型,提出火灾后衬砌安全风险等级和风险值分级,借助现场检测结果估算先验概率; 最后,根据服役寿命指数函数分布假设确定各评价指标的转移概率。广昆高速石牙山隧道火灾中心点附近衬砌表面存在大范围剥落,最大深度为40 mm,混凝土强度衰减率为0.10~0.12,将该模型用于隧道在火灾后的安全风险评估,评估结果表明,火灾后公路隧道衬砌安全的风险值随服役时间逐渐增加,35年时的风险值达到0.81,火灾诱发的混凝土劣化、衬砌裂缝会在服役过程中逐步影响隧道衬砌安全,导致安全风险随着运营时间的增加而增大。

关键词: 公路隧道, 火灾, 衬砌长期安全, 动态贝叶斯网络, 评估模型

Abstract: Fire incidents in operating highway tunnels can cause sustained deterioration of the tunnel lining structure. To accurately predict the evolving risk associated with lining degradation after such hazards, a dynamic Bayesian network (DBN) model is developed to assess the long-term structural safety of highway tunnel linings. First, based on the characteristics of fire-induced damage, a safety evaluation index system is established, yielding a corresponding weight table. Then, a DBN-based evaluation model is constructed, and the risk grades and classification values of postfire lining safety are proposed. Prior probabilities are estimated from field detection results, while the transfer probabilities of each evaluation index are derived assuming an exponential distribution for tunnel service life. The model is applied to the Shiyashan tunnel. Results show extensive concrete spalling near the center of the fire zone, with a maximum depth of 40 mm and a concrete strength decay rate of 0.10 0.12. The safety risk value of the lining increases with service time, reaching 0.81 at 35 years. The progressive deterioration of concrete and development of cracks induced by the fire continuously impact structural safety, resulting in a rising risk value over time.

Key words: highway tunnel, fire hazard, lining long-term safety, dynamic Bayesian network, assessment model