• 中国科学引文数据库(CSCD)核心期刊
  • 中文核心期刊中文科技核心期刊
  • Scopus RCCSE中国权威学术期刊
  • 美国EBSCO数据库 俄罗斯《文摘杂志》
  • 《日本科学技术振兴机构数据库(中国)》
二维码

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (S1): 124-130.DOI: 10.3973/j.issn.2096-4498.2024.S1.013

• 研究与探索 • 上一篇    下一篇

公路隧道风光水储互补发电系统容量配置研究

李金1, 2, 林志3, 于冲冲3 *, 尹恒3, 刘超铭3, 黄可心3   

  1. 1. 中交第二公路勘察设计研究院有限公司, 湖北 武汉 430050; 2. 中交集团隧道与地下空间工程技术研发中心, 湖北 武汉 430056;3. 重庆交通大学, 重庆 400074)

  • 出版日期:2024-08-20 发布日期:2024-09-02
  • 作者简介:李金(1986—),男,江苏高淳人,2010年毕业于同济大学,隧道及地下建筑工程专业,硕士,正高级工程师,现从事隧道及地下空间工程的设计及科研工作。E-mail: 799370649@qq.com。*通信作者: 于冲冲, E-mail: 1327383298@qq.com。

Capacity Configuration of Wind-Solar-Water-Energy Storage Complementary Power Generation System for Highway Tunnels

LI Jin1, 2, LIN Zhi3, YU Chongchong3, *, YIN Heng3, LIU Chaoming3, HUANG Kexin3   

  1. (1. CCCC Second Highway Consultants Co., Ltd., Wuhan 430050, Hubei, China; 2. Tunnel and Underground Space Engineering Technology Research and Development Center of CCCC, Wuhan 430056, Hubei, China; 3. Chongqing Jiaotong University, Chongqing 400074, China)

  • Online:2024-08-20 Published:2024-09-02

摘要: 为降低公路隧道的电力运营成本,探究可再生能源互补发电系统在公路隧道的应用前景,研究合适的容量配置求解方法。建立利用风、光、水和储能设备的互补发电系统为公路隧道提供电力资源。以特长公路隧道(总长7.1 km)为估算模型,采用改进后的粒子群优化算法,即离散型自适应粒子群优化算法,以全生命周期的建设成本和设备维护成本最小为目标函数,以缺电负荷率(LPSP)和储能电池的状态为约束,对风力发电设备、光伏发电设备、水力发电设备和储能设备的最优容量配置进行求解。结果表明: 1)对比标准粒子群算法,离散型自适应粒子群优化算法的总投入成本更少,寻优能力更强; 2)对比该隧道1年的用电成本,前期投入将在5年内回本; 3)在风光水储互补发电系统的设备全生命使用周期的20年内,该隧道可节省1 920.39万元电费。

关键词: 能耗, 公路隧道, 风光水储互补发电系统, 离散型自适应粒子群优化算法, 容量配置

Abstract: To lower the electricity operational costs of highway tunnels, the application prospects of renewable energy complementary power generation systems in highway tunnels are explored, and suitable methods for solving capacity configuration are examined. Furthermore, a complementary power generation system using wind, solar, water, and energy storage devices to supply power to highway tunnels is established. Using a particularly-long highway tunnel (total length of 7.1 km) as the estimation model, an improved particle swarm optimization algorithm, namely the discrete adaptive particle swarm optimization algorithm, is employed. This algorithm is used for solving the optimal capacity configuration of wind power, photovoltaic power, hydro power, and energy storage devices, taking the minimal construction and equipment maintenance costs over the entire lifecycle as the objective function and the power shortage load rate and the state of the energy storage battery as constraints. The results indicate the following: (1) Compared to the standard particle swarm algorithm, the discrete adaptive particle swarm optimization algorithm has lower total investment costs and stronger optimization capabilities. (2) Compared to the tunnels annual electricity costs, the initial investment will be recouped within 5 years. (3) Over the 20-year full lifecycle of the equipment in the wind-solar-water-energy storage complementary power generation system, the tunnel can save 19.203 9 million yuan in terms of electricity costs.

Key words: energy consumption, highway tunnel, complementary power generation system of wind-solar-water-energy storage, discrete adaptive particle swarm optimization algorithm, capacity configuration