• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (9): 1649-1663.DOI: 10.3973/j.issn.2096-4498.2025.09.004

• 研究与探索 • 上一篇    下一篇

时速400 km高速铁路隧道洞口等截面缓冲结构型式及参数

王辰, 马伟斌*, 刘艳青, 宁灿程, 韩嘉强, 李山朵, 彭旸, 程爱君   

  1. (中国铁道科学研究院集团有限公司铁道建筑研究所, 北京 100081)
  • 出版日期:2025-09-20 发布日期:2025-09-20
  • 作者简介:王辰(1998—),男,山东济宁人,2023年毕业于中国铁道科学研究院,岩土工程专业,硕士,助理研究员,现从事高速铁路空气动力学研究工作。E-mail: 1226931829@qq.com。*通信作者: 马伟斌, E-mail: dwangfei@163.com。

Types and Parameters of Equal Section Buffer Structures at Entrance of High-Speed Railway Tunnels With 400 km/h Speed

WANG Chen, MA Weibin*, LIU Yanqing, NING Cancheng, HAN Jiaqiang, LI Shanduo, PENG Yang, CHENG Aijun   

  1. (Railway Engineering Research Institute, China Academy of Railway Sciences Co., Ltd., Beijing 100081, China)
  • Online:2025-09-20 Published:2025-09-20

摘要: 为研究时速400 km隧道洞口增设不同型式及参数的等截面缓冲结构时,初始压缩波气压及压力梯度峰值、洞口微气压波的气压峰值变化规律,采用三维CFD数值仿真方法进行分析,结果显示: 1)洞口增设缓冲结构使初始压缩波气压峰值小幅上升,峰值增长率为0.26%~7.74%。2)正切型缓冲结构相较于直切及倒切型缓冲结构对微气压波的缓解性能更优,且微气压波气压峰值缓解率随着缓冲结构斜切段的切削斜率k减小而提升。倒切型缓冲结构微气压波缓解率Rmicro为17.1%,直切型缓冲结构微气压波缓解率Rmicro为23.0%,A-6正切型缓冲结构微气压波缓解率Rmicro可达45.1%。3)缓冲结构增设开孔能有效提升微气压波缓解率,且顶部开孔相较于侧面开孔的缓解性能更优。不开孔B-1型缓冲结构微气压波缓解率Rmicro为44.1%,侧面开孔B-2型缓冲结构微气压波缓解率Rmicro为58.5%,顶部开孔B-8型缓冲结构微气压波缓解率Rmicro为64.4%。4)顶部开孔缓冲结构的缓解性能与开孔型式无明显关联,与开孔面积呈正相关性。5)隧道进出口增设长度为25 m的B、C、D组开孔型缓冲结构时,微气压波缓解率达55%以上。

关键词: 高速铁路隧道, 隧道洞口, 等截面缓冲结构, 初始压缩波气压, 压力梯度, 微气压波, 缓解率

Abstract: In this study, a three-dimensional computational fluid dynamics numerical simulation method is employed to examine the variation patterns of the aerodynamic pressure and pressure gradient peak of initial compression waves (ICWs) as well as the pressure peak of micro-pressure waves (MPWs) for different types and parameters of equal section buffer structures at the tunnel entrance at 400 km/h. The major findings are as follows: (1) Adding buffer structures at the entrance slightly increases the ICW aerodynamic pressure peak, with a peak increase range of 0.26%-7.74%. (2) A tangent-type buffer structure outperforms straight- and inverted-cut-type buffer structures in terms of relief performance, and the peak relief rate of MPWs increases as the cutting slope of the buffer structure decreases. The relief rates of MPWs for inverted shear, straight shear, and A-6 tangent types reach 17.1%, 23.0%, and 45.1%, respectively. (3) Perforating the buffer structures effectively improves the relief rate of MPWs, and the top perforations achieve better relief performance than side perforations. The relief rates of MPWs for nonperforated B-1, side-perforated B-2, and top-perforated B-8 types are 44.1%, 58.5%, and 64.4%, respectively. (4) The relief performance of the top-perforated buffer structures does not significantly correlate with the perforation type but positively correlates with the perforation area. (5) When adding 25-m-long B, C, and D group perforated buffer structures at the tunnel entrance and exit, the relief rate of MPWs reaches over 55%.

Key words: high-speed railway tunnels, tunnel entrance, equal cross-section buffer structure, aerodynamic pressure of initial compression waves, pressure gradient, micro pressure waves, response rate