• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (11): 2091-2099.DOI: 10.3973/j.issn.2096-4498.2025.11.010

• 研究与探索 • 上一篇    下一篇

基于激光点云特征模板匹配的TBM掘进隧道钢拱架位置特征提取方法

宋耀东1, 2, 3, 郑小兵2, 3, *, 朱英4, 李健军2, 3, 曹宸旭4   

  1. (1. 中国科学技术大学研究生院科学岛分院, 安徽 合肥 230026; 2. 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 安徽 合肥 230031; 3. 中国科学院通用光学定标与表征技术重点实验室, 安徽 合肥 230031; 4. 中铁工程装备集团有限公司, 河南 郑州 450007)
  • 出版日期:2025-11-20 发布日期:2025-11-20
  • 作者简介:宋耀东(1988—),男,安徽安庆人,中国科学技术大学电子信息专业在读博士,研究方向为TBM掘进隧道三维建图技术与环境感知在智能喷浆中的应用。E-mail: songyaodong@mail.ustc.edu.cn。*通信作者: 郑小兵, E-mail: xbzheng@aiofm.ac.cn。

Extraction Method of Steel-Arch Locations in TBM Tunnels Based on Laser Point-Cloud Feature Template Matching

SONG Yaodong1, 2, 3, ZHENG Xiaobing2, 3, *, ZHU Ying4, LI Jianjun2, 3, CAO Chenxu4   

  1. (1. Science Island Branch, Graduate School of USTC, University of Science and Technology of China, Hefei 230026, Anhui, China; 2. Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 23003l, Anhui, China; 3. Key Laboratory of Optical Calibration and Characterization, Chinese Academy of Sciences, Hefei 230031, Anhui, China; 4. China Railway Engineering Equipment Group Co., Ltd., Zhengzhou 450007, Henan, China)
  • Online:2025-11-20 Published:2025-11-20

摘要: 为解决隧道智能化喷浆作业过程中对复杂壁面上钢拱架位置精准提取的难题,提出一种基于激光点云特征模板匹配的TBM掘进隧道钢拱架位置特征提取方法。首先,设计对梯度方向敏感的卷积核,通过精准捕捉钢拱架结构在不同梯度方向上呈现出的特征差异,有效强化钢拱架目标与凹凸壁面背景之间的区分度;其次,构建几何约束模板,充分利用钢拱架自身固有的几何形态特征,对图像中的非目标区域进行严格过滤;再次,通过卷积核与几何约束模板的协同作用,实现在凹凸不平的洞壁环境中对钢拱架的精准定位与提取;最后,为验证该算法的实际性能,将其应用于中国西南地区一处正在建设的隧道进行试验测试。结果表明: 在无人工辅助的情况下,3种典型的隧道内场景中,该算法的综合准确率、召回率和F分数分别达到91.18%、93.33%和92.22%,算法计算时间为秒级;与传统识别方法相比,该方法在复杂环境下的适应性更强,识别效果更为稳定可靠,取得了显著优于传统算法的应用成效,为智能喷浆中钢拱架的高效识别提供了技术支持。

关键词: 特征提取, 点云分割, 模板匹配, 三维重建, TBM掘进隧道, 智能喷浆, 钢拱架识别

Abstract: During intelligent shotcrete operation in tunnels, accurately extracting the position of steel arches on complex tunnel walls is challenging. To address this issue, an extraction method for steel-arch frames in TBM tunnels based on laser point-cloud feature template matching is proposed. First, a convolutional kernel sensitive to gradient directions was specifically designed to accurately capture the feature differences of steel-arch structures in different gradient directions, effectively enhancing the distinguishability between the steel-arch targets and the uneven tunnel wall background. Second, a geometric constraint template, which utilizes the inherent geometric features of steel-arch frames, was constructed to strictly filter nontarget areas in images. Through the synergistic effect of the convolutional kernel and the geometric constraint template, accurate positioning and extraction of steel-arch frames in the uneven tunnel wall environments is realized. Finally, to verify the performance of the algorithm, it was applied to an experimental test in a tunnel under construction in southwest China. The results show that, without manual assistance, in three typical tunnel scenarios, the comprehensive accuracy, recall rate, and F-score reach 91.18%, 93.33%, and 92.22%, respectively, and the computation time of the algorithm is on the order of seconds. Compared with traditional recognition methods, the proposed method demonstrates stronger adaptability in complex environments, more stable and reliable recognition performance, and significantly outperforms traditional algorithms, providing robust technical support for the efficient recognition of steel-arch frames in intelligent shotcreting.

Key words: feature extraction; , point-cloud segmentation, template matching, three-dimensional reconstruction, TBM tunnel, intelligent shotcreting, steel-arch frame recognition