• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (12): 2389-2400.DOI: 10.3973/j.issn.2096-4498.2025.12.018

• 监控与维护 • 上一篇    下一篇

基于多尺度融合YOLO-B算法的隧道衬砌渗漏水检测方法

徐飞1, 2, 苏振海1, 3, 段雪锋1, 2, *   

  1. (1. 石家庄铁道大学 河北省大型结构健康诊断与控制重点实验室, 河北 石家庄 050043; 2. 燕赵现代交通实验室, 河北 石家庄 050043; 3. 石家庄铁道大学安全工程与应急管理学院, 河北 石家庄 050043 )
  • 出版日期:2025-12-20 发布日期:2025-12-20
  • 作者简介:徐飞(1988—),男,河北邢台人,2017年毕业于山东大学,岩土工程专业,博士,教授,现从事隧道与地下工程结构智慧感知与性能提升等研究工作。 E-mail: xufei@stdu.edu.cn。 *通信作者: 段雪锋, E-mail: dxf@stdu.edu.cn。

Tunnel Lining Leakage Detection Method Based on Multi-Scale Fusion YOLO-B Algorithm

XU Fei1, 2, SU Zhenhai1, DUAN Xuefeng1, 2, *   

  1. (1. Key Laboratany of Structural Health Monitoring and Control, Shijiazhuang Tiedao University, Shijiazhuang 050043, Hebei, China; 2. Yanzhao Modern Transportation Laboratory, Shijiazhuang 050043, Hebei, China;3. School of Safety Engineering and Emergency Management, Shijiazhuang Tiedao University,Shijiazhuang 050043, Hebei, China)
  • Online:2025-12-20 Published:2025-12-20

摘要: 针对渗漏水图像检测算法受隧道内复杂环境、光照强度不足、干扰物遮挡等因素的影响导致精准度不足的问题,在YOLOv8算法基础上,改进优化提出YOLO-B算法。该算法引入具备局部-全局特征协同、轻量化注意力和多尺度自适应融合的C2f_AdditiveBlock结构,提升模型在复杂环境和低光照下的适应能力;构建可跨阶段特征堆叠的Slim-Neck结构,增强对大尺度渗水扩散区域的检测能力,同时降低Neck部分的计算冗余。采用综合隧道检测车现场采集图像,结合隧道衬砌渗漏水相关公开数据集,构建复杂环境下的隧道衬砌渗漏水数据集,利用准确率、mAP50、mAP50~95和GFLOPs等作为评价指标,通过消融试验、对比分析对模型性能进行评估。结果表明: YOLO-B较原算法,mAP50、mAP50~95、准确率分别提高了1.9%、2.4%、7.2%,GFLOPs降低至7.3;与SSD、Faster R-CNN、YOLOv5、YOLOv6、YOLOv8等主流目标检测算法进行对比,mAP50分别提高6.2%、13.2%、3.2%、3.7%、1.9%,验证了所提改进算法在复杂环境衬砌渗漏水识别中的有效性。

关键词: 衬砌渗漏水, 图像识别, 深度学习, YOLO-B算法, 目标检测, 多尺度融合

Abstract: Tunnel environments often feature complex conditions, insufficient illumination, and visual obstructions, which collectively reduce the accuracy of existing leakage-detection algorithms. To address these limitations, the authors develop an improved YOLO-B algorithm based on YOLOv8. The proposed YOLO-B model incorporates the C2f_AdditiveBlock module, which integrates local-global feature collaboration, lightweight attention, and multi-scale adaptive fusion to enhance robustness under complex and low-light conditions. A Slim-Neck module with cross-stage feature stacking is further constructed to improve detection capability for large-scale water diffusion areas while reducing computational redundancy in the neck network. Using publicly available datasets and images collected in situ by tunnel inspection vehicles, a comprehensive tunnel lining leakage dataset under realistic conditions is established. Model performance is assessed using accuracy, mAP50, mAP50-95, and GFLOPs through ablation studies and comparative analyses. The results show that: (1) relative to the baseline algorithm, YOLO-B increases mAP50 by 1.9%, mAP50-95 by 2.4%, and accuracy by 7.2%, while reducing GFLOPs to 7.3; and (2) compared with mainstream object detection algorithms such as SSD, Faster R-CNN, YOLOv5, YOLOv6, and YOLOv8, YOLO-B improves mAP50 by 6.2%, 13.2%, 3.2%, 3.7%, and 1.9%, respectively. These findings verify the effectiveness of the proposed algorithm for detecting tunnel lining leakage under complex environmental conditions.

Key words: lining water leakage, image recognition, deep learning, YOLO-B algorithm, object detection, multi-scale fusion