• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (S2): 380-389.DOI: 10.3973/j.issn.2096-4498.2025.S2.035

• 监控与维护 • 上一篇    下一篇

融合DCGAN与DT-YOLO模型的公路隧道衬砌裂缝病害数据增强与智能识别方法

周中, 李世帅, 卢王豪   

  1. (中南大学土木工程学院, 湖南 长沙 410075)
  • 出版日期:2025-12-20 发布日期:2025-12-20
  • 作者简介:周中(1978—),男,河南汝南人,2006年毕业于中南大学,土木工程专业,博士,教授,现从事隧道病害智能感知工作。E-mail: dazhong78@csu.edu.cn。

A Method for Data Augmentation and Intelligent Recognition of Crack Defects in Highway Tunnel Linings by Integrating Deep Convolutional Generative Adversarial Networks and Dual-Task YOLO Model

ZHOU Zhong, LI Shishuai, LU Wanghao   

  1. (School of Civil Engineering, Central South University, Changsha 410075, Hunan, China)
  • Online:2025-12-20 Published:2025-12-20

摘要: 为解决隧道衬砌裂缝图像样本不足以及现有检测方法在复杂背景下识别精度较低的问题,提出一种融合深度卷积对抗生成网络(DCGAN)与DT-YOLO模型的智能裂缝检测方法。在数据增强阶段,采用DCGAN-RE生成具有丰富纹理细节与真实病害特征的裂缝图像,有效扩充训练样本规模,构建出涵盖多种裂缝形态与背景干扰的数据集。在检测模型设计方面,提出DT-YOLO结构,引入全局特征金字塔增强多尺度语义信息融合能力,并集成小波变换下采样模块以保留高频细节特征,从而提升模型对复杂裂缝形态及噪声背景下病害特征的识别性能。试验结果表明,该方法在自建隧道衬砌裂缝数据集上的F1值与平均精度分别达到89.43%与88.10%,相较于主流YOLO系列及其他典型检测模型具有显著优势,验证了其在应对隧道环境光照变化、污迹干扰等复杂场景下的鲁棒性与泛化能力。

关键词: 公路隧道, 衬砌裂缝, 对抗生成网络, DT-YOLO模型, 智能检测

Abstract: To addresses the challenges of insufficient tunnel lining crack image samples and low recognition accuracy of existing detection methods in complex backgrounds, an intelligent crack detection approach that integrates deep convolutional generative adversarial networks (DCGAN) with the dual-task (DT)-YOLO model is proposed. In data augmentation phase, DCGAN with regularization and enhancement generates crack images rich in texture details and authentic defect characteristics, effectively expanding the training sample size to construct a dataset encompassing diverse crack morphologies and background interferences. For model design, the DT-YOLO architecture is introduced. It incorporates a global feature pyramid to enhance multiscale semantic information fusion capabilities and integrates a wavelet subsampling module to preserve high-frequency detail features. This remarkably improves the model′s performance in recognizing complex crack morphologies and defect features within noisy backgrounds. Experimental results demonstrate that the proposed method achieves an F1 score of 89.43% and an average precision of 88.10% on the self-built tunnel lining crack dataset. Compared to mainstream YOLO variants and other typical detection models, it exhibits distinct advantages, validating its robustness and generalization capabilities in complex tunnel environments characterized by varying illumination and stain interference. The results provide a new, highly accurate, and feasible approach for the automated detection of apparent structural defects in tunnels.

Key words: highway tunnels, lining cracks, adversarial generative networks, dual-task YOLO model, intelligent detection