• 中国科学引文数据库(CSCD)来源期刊
  • 中文核心期刊中文科技核心期刊
  • Scopus RCCSE中国核心学术期刊
  • 美国EBSCO数据库 俄罗斯《文摘杂志》
  • 《日本科学技术振兴机构数据库(中国)》
二维码

隧道建设(中英文) ›› 2018, Vol. 38 ›› Issue (12): 2040-2045.DOI: 10.3973/j.issn.2096-4498.2018.12.017

• 施工技术 • 上一篇    下一篇

富水卵石层土压平衡盾构水下接收技术

吴镇1, 耿传政2, 王磊1   

  1. (1. 中铁工程设计咨询集团有限公司济南设计院, 山东 济南 250022;  2. 中铁十四局集团隧道工程有限公司, 山东 济南 250002)
  • 收稿日期:2018-06-06 修回日期:2018-08-20 出版日期:2018-12-20 发布日期:2019-01-03
  • 作者简介:吴镇(1988—),男,山东聊城人,2013年毕业于石家庄铁道大学,道路与铁道工程专业,硕士,工程师,主要从事地下及隧道工程设计与研究工作。Email: 2582041348@qq.com。

Underwater Receiving Technology of EPB Shield in  Waterrich Gravel Stratum

WU Zhen1, GENG Chuanzheng2, WANG Lei1   

  1. (1. Jinan Design Institute, China Railway Engineering Consulting Group Co., Ltd., Jinan 250022, Shandong, China;  2. China Railway 14th Bureau Group Co., Ltd., Jinan 250002, Shandong, China)
  • Received:2018-06-06 Revised:2018-08-20 Online:2018-12-20 Published:2019-01-03

摘要:

为确保济南市轨道交通R1号线大杨站盾构顺利接收及上方管线安全,提出复杂地质条件下土压平衡盾构水下接收方案,阐述垂直冻结加固、洞门凿除、挡墙及板下临时支撑施作、盾构掘进模式及掘进参数控制、同步注浆及补强注浆、外凸式洞门设计等水下接收技术。主要结论如下: 1)在巨厚富水卵石层中盾构接收情况下,常规加固措施无法保证加固效果时,建议采用水下接收方式; 2)优化洞门凿除工序,视情况分层分块凿除,降低洞门凿除的风险; 3)采用不同的掘进模式,保证土压平衡盾构水下接收的顺利实施; 4)外凸式洞门后浇环梁设计可减小洞门永久封堵的施工风险; 5)整个接收阶段管线最大沉降变形仅1.41 mm,采用水下接收技术能保证富水卵石层中土压平衡盾构的安全接收。

关键词: 地铁区间隧道, 富水卵石层, 土压平衡盾构, 水下接收, 洞门凿除, 端头冻结加固, 盾构掘进参数, 同步注浆

Abstract:

In order to guarantee the successful receiving of shield in Dayang Station on Jinan Rail Trainsit Line R1 and the safety of the upper pipelines, an underwater receiving scheme for EPB shield under complex geological conditions is put forward; and the underwater shield receiving technologies, including vertical freezing consolidation, portal cutting, retaining wall and temporary support under plate, shield tunneling mode and parameter control, synchronous grouting and supplementary grouting and outer convex portal design, are described in detail. Some conclusions are drawn as follows: (1) The underwater shield receiving technology is recommended in extremely thick waterrich gravel stratum, in which the conventional reinforcement cannot work. (2) The portal cutting process should be optimized to reduce the construction risk. (3) By using different tunneling mode of shield, the successful underwater shield receiving can be successfully carried out. (4) The outer convex portal can avoid the risk of sealed one. (5) The deformation of the upper pipeline, 1.41 mm, shows that the abovementioned underwater shield receiving technology is feasible and rational.

Key words: metro tunnel, waterrich gravel stratum, EPB shield, underwater receiving, portal cutting, end soil freezing reinforcement, shield tunneling parameters, synchronous grouting

中图分类号: