• 中国科学引文数据库(CSCD)核心期刊
  • 中文核心期刊中文科技核心期刊
  • Scopus RCCSE中国权威学术期刊
  • 美国EBSCO数据库 俄罗斯《文摘杂志》
  • 《日本科学技术振兴机构数据库(中国)》
二维码

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (4): 673-681.DOI: 10.3973/j.issn.2096-4498.2024.04.005

• 研究与探索 • 上一篇    下一篇

机器视觉下多特征组合的围岩风化程度判定方法

毛勤平1, 刘军成1, 杨晓秋2 3, *, 刘学增4, 桑运龙2 3   

  1. 1. 江西省交通投资集团有限责任公司项目建设管理公司, 江西 南昌 330003 2. 上海同岩土木工程科技股份有限公司, 上海 200092 3. 上海地下基础设施安全检测与养护装备工程技术研究中心,上海 200092 4. 同济大学土木工程学院地下建筑与工程系, 上海 200092
  • 出版日期:2024-04-20 发布日期:2024-05-24
  • 作者简介:毛勤平(1974—),男,江西吉安人,2007年毕业于武汉理工大学,土木工程专业,本科,高级工程师,现从事高速公路工程技术管理与研究工作。Email: 517711896@qq.com。

Method for Determining Weathering Degree of Surrounding Rock With Multifeatures Based on Machine Vision

MAO Qinping1, LIU Juncheng1, YANG Xiaoqiu2, 3, *, LIU Xuezeng4, SANG Yunlong2, 3   

  1. (1. Jiangxi Provincial Communications Investment Group Co., Ltd. Project Construction Management Company, Nanchang 330003, Jiangxi, China; 2. Shanghai Tongyan Civil Engineering Technology Co., Ltd., Shanghai 200092, China; 3. Shanghai Engineering Research Center of Underground Infrastructure Detection and Maintenance Equipment, Shanghai 200092, China; 4. Department of Geotechnical Engineering College of Civil Engineering, Tongji University, Shanghai 200092, China)
  • Online:2024-04-20 Published:2024-05-24

摘要: 针对围岩风化程度判定存在主观性强、准确率低的问题,开展基于图像识别和机器学习的围岩风化程度定量化判别技术研究。依托大广复线扩容工程搜集隧道施工期间掌子面的图像,采用数字图像处理技术对掌子面图像颜色信息、表面纹理信息、节理信息进行自动化提取。基于提取的指标参数,借助机器学习方法进行指标筛选,并建立围岩风化程度预测模型。通过研究可以得到: 1)对预测模型准确率贡献度由大到小的指标分别为颜色、完整性和纹理,各单一指标预测模型准确率分别为71.91%、70.78%47.19% 2)多指标组合模型相较单一指标模型判定准确率更高,采用颜色、纹理、完整性3个指标的组合模型,准确率达到86.52%; 3)对13个二级指标进行特征筛选,剔除5个贡献度较低的纹理特征指标,采用剩余的8个关键指标构建预测模型,预测精度仍能达到85%,满足工程需求。研究结果表明: 掌子面图像的颜色、纹理、完整性信息能够有效表征围岩风化程度,建立在这些指标之上的机器学习预测模型能够稳定有效地对掌子面的风化程度进行判定。

关键词: 隧道工程, 围岩风化程度, 机器学习, 数字图像处理技术

Abstract: Onsite determination of the weathering degree of the surrounding rock has disadvantages such as strong subjectivity and poor accuracy. Therefore, a quantitative identification technology based on image recognition and machine learning is developed. Based on the images of the tunnel working surface collected from the DaqingGuangzhou doubleline expansion project, the digital image processing technology is applied to automatically extract the color, texture, and joint information of the tunneling face. Next, a model for determining the weathering degree of the surrounding rock is established by applying machine learning to filter the extracted parameters. Conclusions drawn are as follows: (1) The indices contributing to the accuracy of the prediction model from large to small are color, integrity, and texture, corresponding to the prediction accuracies of 71.91%, 70.78%, and 47.19%. (2) Compared with the single index prediction model, the multiindex prediction model has a higher prediction accuracy. The prediction model with three indices of color, texture, and integrity exhibits a prediction accuracy of 86.52%. (3) Eight key secondary indices are filtered from 13 indices, based on which a new prediction model is constructed with a prediction accuracy of 85%, meeting the engineering requirements. Results show that color, texture, and integrity information can effectively represent the weathering degree of the surrounding rock. Additionally, the prediction model based on these indices can stably and effectively determine the weathering degree of the tunneling face.

Key words: tunnel engineering, weathering degree of surrounding rock, machine learning, digital image processing