• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (5): 1056-1067.DOI: 10.3973/j.issn.2096-4498.2024.05.013

• 研究与探索 • 上一篇    下一篇

Ensemble Convolutional Neural Networks and Visual Transformers: Research on Tunnel Face Rock Identification(集成卷积神经网络和视觉Transformer的隧道掌子面岩性判识研究)

向露露1 2, 童建军1 2, *, 王明年1 2, 苗兴旺1 2, 叶沛1 2   

  1. 1. 西南交通大学 交通隧道工程教育部重点实验室, 四川 成都 610031;2. 西南交通大学土木工程学院, 四川 成都 610031)

  • 出版日期:2024-05-20 发布日期:2024-06-22
  • 作者简介:向露露(2000—),男,湖北宜昌人,西南交通大学土木水利专业在读硕士,研究方向为隧道智能建造。Email: 1097742366@qq.com。*通信作者: 童建军, Email: jjtong@163.com。

Ensemble Convolutional Neural Networks and Visual Transformers: Research on Tunnel Face Rock Identification

XIANG Lulu1, 2, TONG Jianjun1, 2, *, WANG Mingnian1, 2, MIAO Xingwang1, 2, YE Pei1, 2   

  1. (1. Key Laboratory of Transportation Tunnel Engineering, the Ministry of Education, Southwest  Jiaotong University, Chengdu 610031, Sichuan, China; 2. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China)
  • Online:2024-05-20 Published:2024-06-22

摘要: 为研究综合高效的隧道掌子面岩性智能分类方法,首先,通过收集高铁沿线施工隧道高清掌子面照片、地质素描图及工程地质说明,筛选并统计出灰岩、泥岩、砂岩、玄武岩4种岩性,在此基础上,采用图像增强扩充样本数量并构建岩性样本集; 然后,基于上述样本集分别构建ResNet50V2岩性分类迁移模型及VIT岩性分类模型,对比二者岩性分类效果,并采用Stacking方法集成2种模型的分类特点; 最后,通过对比3种元学习器(逻辑回归、支持向量机、决策树)对2种模型的集成融合效果来选取最适用的元学习器。结果表明: 采用逻辑回归集成ResNet50V2VIT所构建的集成模型对岩性的分类效果最好,能充分融合掌子面岩性的全、局部特征来进行分类,模型准确率达到93.8%

关键词: 隧道, 掌子面岩性, 卷积神经网络, 视觉Transformer, 集成学习, Stacking方法

Abstract: The application of an increasing number of new technologies in tunnel construction is a consequence of the rapid development of intelligent tunnel construction. Among these, the use of machine vision instead of human eyes for geological information recognition in tunnels has become increasingly widespread. The authors build on this trend by using machine vision to investigate intelligent classification methods for the lithology of the tunnel face. First, four types of lithology (limestone, mudstone, sandstone, and basalt) are screened and counted by collecting highdefinition tunnel face photos, geological sketches, and engineering geological descriptions along the highspeed railway. On this basis, image enhancement techniques are used to expand the number of samples and construct a lithology sample set. Then, based on the above sample sets, the ResNet50V2 lithology classification transfer learning model and the VIT lithology classification model are constructed. The lithology classification effects of the two models are compared, and the Stacking method is used to integrate the classification characteristics of the two models. The authors select the most suitable metalearner by comparing the integrated fusion effects of three metalearners, logistic regression(LR), support vector machine, and decision tree, on the two models. The results reveal that the Stacking model constructed by LR integrated with ResNet50V2 and VIT has the best classification effect on lithology. Apart from having an accuracy rate of 93.8%, it can also fully integrate the overall and local features of the lithology of the tunnel face for better classification.

Key words:

tunnel, lithology of tunnel face, convolutional neural network, visual Transformer, ensemble learning, Stacking method