• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (7): 1465-1476.DOI: 10.3973/j.issn.2096-4498.2024.07.013

• 高速铁路隧道空气动力学专题 • 上一篇    下一篇

时速400 km高速铁路隧道衬砌表面气动载荷特征和分布规律研究

梁争龙1, 杨旸2, 魏康1, 杜云超3, 梅元贵1 *   

  1. 1. 兰州交通大学 甘肃省轨道交通力学应用工程实验室, 甘肃 兰州 730070 2. 中国铁路经济规划研究院有限公司, 北京 100038; 3. 中铁西南科学研究院有限公司, 四川 成都 611731)


  • 出版日期:2024-07-20 发布日期:2024-08-05
  • 作者简介:梁争龙(1998—),男,山西朔州人,兰州交通大学机械设计及理论专业在读硕士,研究方向为轨道交通空气动力学及应用。 E-mail: lzl1776138133@126.com。 *通信作者: 梅元贵, E-mail: meiyuangui@163.com。

Characteristics and Distribution Pattern of Surface Aerodynamic Load on Lining of 400 km/h High-Speed Railway Tunnels

LIANG Zhenglong1, YANG Yang2, WEI Kang1, DU Yunchao3, MEI Yuangui1, *#br#   

  1. (1. Gansu Province Engineering Laboratory of Rail Transit Mechanics Application, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China; 2. China Railway Economic and Planning Research Institute Co., Ltd., Beijing 100038, China; 3. China Railway Southwest Research Institute Co., Ltd., Chengdu 611731, Sichuan, China)

  • Online:2024-07-20 Published:2024-08-05

摘要: 为研究隧道单列车通过和2列车等速中央交会时隧道内中央处和洞口内压力波动机制和特征,隧道内各测点气动载荷最大正负压值和最大压力峰峰值沿隧道长度方向的分布规律,隧道长度对隧道气动载荷最值的影响,列车速度对气动载荷最值大小、位置和幅值频次的影响,以及基于隧道内最大压力峰峰值的最不利隧道长度的分布特征,采用一维非定常可压缩不等熵流动模型广义黎曼变量特征线法数值模拟方法和雨流计数法进行研究。结果表明: 1)单列车通过和2列车等速交会的隧道相同位置测点压力在一定时间内保持相同;列车驶出隧道后,压力波形周期重复,与压缩波/膨胀波在隧道内传播的周期相同。2)3种速度和0.5~10 km隧道长度范围内,单列车通过时,隧道内最大正压值在距离隧道入口200~600 m的位置;速度增加,部分长度隧道的最大负压值和最大压力峰峰值位置由隧道中央近进口端内一侧变为隧道中央近出口端内一侧。3)当时速为400 km时,单列车通过基于不同隧道压力最值的最不利长度相同,为1.3 km 2列车等速中央交会依次是1.40.941.2 km4) 隧道单列车通过和2列车等速中央交会的最高幅值等级分别可达到4 800~5 200 Pa10 000~10 400 Pa

关键词: 高速铁路隧道, 气动载荷, 压力衰减, 一维流动模型特征线方法, 雨流计数法

Abstract: A one-dimensional unsteady compressible nonisentropic flow model, incorporating a generalized Riemann variable characteristic line numerical simulation method and the rain flow counting method, is employed to explore the mechanisms and characteristics of pressure fluctuations at the center and inside the entrance and exit of a tunnel during the passage of a single train and the crossing of two trains at the same speed. The distribution patterns of the maximum positive and negative pressures, the maximum pressure peak-to-peak values at various measurement points inside the tunnel along its length, the influence of tunnel length on the maximum tunnel aerodynamic load, the impact of train speed on the magnitude, position, and frequency of amplitude, and the distribution characteristics of the critical tunnel length based on the maximum pressure peak-to-peak value inside the tunnel are obtained. The research results demonstrate the following: (1) The pressure at a given location in the tunnel measurement points remains constant for a certain time when a single train passes through and when two trains cross at a constant speed. After the train exits the tunnel, the pressure waveform repeats periodically, consistent with the propagation period of the compression or expansion wave inside the tunnel. (2) When a single train passes through a tunnel at three different speeds and tunnel lengths ranging from 0.5 to 10 km, the maximum positive pressure value occurs 200600 m from the tunnel entrance. As speed increases, the position of the maximum negative pressure value and the pressure peak-to-peak value for certain tunnel lengths shift from the near-inlet side toward the near-exit side of the tunnel center. (3) At 400 km/h speed, the critical tunnel length based on different maximum pressure loads is 1.3 km for a single train passage and 1.4, 0.94, and 1.2 km for the central meeting of two trains at a constant speed. (4) The highest amplitude levels for single train passage and central meeting of two trains at 400 km/h can reach 4 800 to 5 200 Pa and 10 000 to 10 400 Pa, respectively.

Key words: high-speed railway tunnel, aerodynamic load, pressure attenuation, one-dimensional flow model with characteristic line method, rain flow counting method