• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (8): 1554-1566.DOI: 10.3973/j.issn.2096-4498.2024.08.003

• 研究与探索 • 上一篇    下一篇

隧道管棚支护承载特性及支护参数试验研究

龚伦1, 2, 郭晓航1, 2, 王立川3, *, 杨继康4, 孙地爽1, 2   

  1. (1. 西南交通大学土木工程学院, 四川 成都 610031; 2. 西南交通大学 交通隧道工程教育部重点实验室, 四川 成都 610031; 3. 中铁十八局集团有限公司, 天津 300222; 4. 中交第三公路工程局有限公司, 北京 100010)

  • 出版日期:2024-08-20 发布日期:2024-09-12
  • 作者简介:龚伦(1974—),男,重庆长寿人,2008年毕业于西南交通大学,桥梁与隧道工程专业,博士,副教授,主要从事隧道及地下工程近接施工力学原理及对策研究、运营隧道病害检测与整治技术研究工作。E-mail: gonglun33@126.com。*通信作者: 王立川, E-mail: wlc773747@126.com。

Experimental Study on Bearing Characteristics and Support Parameters of Tunnel Pipe-Roof Supports

GONG Lun1, 2, GUO Xiaohang1, 2, WANG Lichuan3, *, YANG Jikang4, SUN Dishuang1, 2   

  1. (1. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; 2. Key Laboratory of Transportation Tunnel Engineering, the Ministry of Education, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; 3. China Railway 18th Bureau Group Corporation Limited, Tianjin 300222, China; 4. CCCC Third Highway Engineering Bureau, Beijing 100010, China)

  • Online:2024-08-20 Published:2024-09-12

摘要: 为探究隧道管棚注浆钢管不同支护参数对管棚支护承载能力的影响,引入Pasternak双参数模型构建出更符合实际情况的管棚支护力学模型,通过多组室内试验,对管棚在不同注浆钢管管径、壁厚、注浆饱满度及加设钢筋笼条件下的承载能力进行定量研究。研究表明: 1)管棚注浆钢管支护参数中,对管棚承载能力的影响排序为: 管径>注浆饱满度>壁厚>钢筋笼。2)增大管棚注浆钢管管径可大幅提高管棚的承载能力,相比管径为108 mm的管棚,管径为159219299 mm时管棚承载能力分别增大183.58%398.62%874.86%3)管棚钢管注浆不饱满会较大程度削弱管棚的承载能力,钢管注浆饱满度由100%降至75%50%时,管棚承载能力分别降低29.8%34.5%,注浆饱满度为50%时管棚的承载能力与未注浆时相差不大。4)管棚钢管壁厚和钢筋笼加设与否对管棚的承载能力影响较小。因此,在实际工程中,可通过增大管棚钢管管径提升管棚的承载能力,通过减小管棚钢管壁厚及不加设钢筋笼节约用钢量。

关键词: 隧道, 管棚, 支护参数, 承载能力, 管径, 壁厚, 注浆饱满度, 钢筋笼

Abstract: To examine the influence of various support parameters of pipe-roof grouting steel pipes on the bearing capacity of tunnel pipe-roof supports, the Pasternak two-parameter model is adopted to develop an accurate mechanical model of tunnel pipe-roof supports. Indoor experiments are conducted to assess the bearing capacities of pipe-roof grouting steel pipes with varying pipe diameters, wall thicknesses, and grouting fullness, as well as with and without reinforced steel cages. The experimental results reveal the following: (1) The influence of various support parameters of pipe-roof grouting steel pipes on the bearing capacity of the pipe roof follows the order of pipe diameter > grouting fullness > wall thickness > steel cage. (2) Increasing the pipe diameter significantly improves the bearing capacity of the pipe roof. For instance, compared to a pipe diameter of 108 mm, pipe diameters of 159, 219, and 299 mm increase the bearing capacity of the support by 183.58%, 398.62%, and 874.86%, respectively. (3) The grouting fullness substantially impacts the bearing capacity of the support. Specifically, as the grouting fullness of the pipe roof decreases from 100% to 75% and then to 50%, the bearing capacity drops by 29.8% and 34.5%, respectively. However, at the grouting fullness of 50%, the bearing capacity of the pipe roof is similar to that of a nongrouted pipe roof. (4) The reinforced steel cage and the wall thickness of the pipe roof slightly impact the bearing capacity of the pipe roof. Hence, in practical applications, increasing the pipe diameter is the most efficient approach for enhancing the bearing capacity of the pipe roof. Furthermore, reducing the wall thickness of the steel pipe can lower steel consumption without requiring a reinforced steel cage.

Key words: tunnel, pipe roof, support parameters, bearing capacity, pipe diameter, wall thickness, grouting fullness, steel cage