• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (S1): 8-15.DOI: 10.3973/j.issn.2096-4498.2024.S1.002

• 专家论坛 • 上一篇    下一篇

基于3D激光感知的隧道爆破参数优化设计方法

肖清华1, 袁浩1, *, 夏金选2, 欧小强3, 臧熙玮2, 钟德超2, 刘志强3   

  1. (1. 西南交通大学, 四川 成都 610031 2. 中铁开发投资集团有限公司, 云南 昆明 650500 3. 中铁西南科学研究院有限公司, 四川 成都 611731
  • 出版日期:2024-08-20 发布日期:2024-09-02
  • 作者简介:肖清华(1969—),男,江西信丰人,2007年毕业于西南交通大学,岩土工程专业,工学博士后,教授级高级工程师,主要从事土木工程专业教学与科研工作。E-mail: xqh_bp@163.com。*通信作者: 袁浩, E-mail: yh_study19971005@163.com。

Tunnel Blasting Parameters Optimization Design Method Based on Three-Dimensional Laser Sensing

XIAO Qinghua1, YUAN Hao1, *, XIA Jinxuan2, OU Xiaoqiang3, ZANG Xiwei2, ZHONG Dechao2, LIU Zhiqiang3   

  1. (1. Southwest Jiaotong University, Chengdu 610031, Sichuan, China; 2. China Railway Development and Investment Group Co., Ltd., Kunming 650500, Yunnan, China; 3. China Railway Southwest Research Institute Co., Ltd., Chengdu 611731, Sichuan, China)
  • Online:2024-08-20 Published:2024-09-02

摘要: 为解决隧道爆破质量控制困难的问题,探究新型爆破参数优化方法,提出一种3D激光扫描技术与BP神经网络相结合的实时优化方法,对隧道爆破超欠挖感知及其后续钻爆参数进行实时修正,构建现场扫描方法、数据处理、点云提取与超欠挖图像等工作程序,建立BP神经网络模型、算法并确定模型参数。通过试验验证表明: 1)将3D激光扫描技术应用于隧道爆破超欠挖质量感知中切实可行,与人工测量结果吻合较好,具有快速、实时和准确的优点; 2)采用3D激光扫描方法能够对隧道爆破后的断面轮廓线进行精确评测,在获取爆破超欠挖的精细数据后,通过样本学习完成模型训练能推理出较为合理的爆破参数,改进后的优化方案使平均超挖降低54.8%

关键词: 隧道, 3D激光扫描, BP神经网络; 爆破参数优化; 超欠挖识别

Abstract: During tunnel blasting construction, the blasting quality is difficult to control. Therefore, a real-time blasting parameter optimization method based on three-dimensional(3D) laser scanning technology and back propagation(BP) neural network is proposed. This method percepts the over-and under-excavation of tunnel blasting and corrects subsequent drilling and blasting parameters in real time. The working procedures of field scanning method, data processing, point cloud extraction, and over- and under-excavation images are constructed. Finally, the BP neural network model, algorithm, and model parameters are established. The verification test results show that: (1) It is feasible to apply 3D laser scanning technology to the over- and under-excavation quality perception of tunnel blasting, which is in good agreement with the manual measurement results, and has the advantages of fast, real-time, and accurate. (2) The 3D laser scanning method can accurately evaluate the profile line of the tunnel after blasting. After obtaining precise data on blasting over- and under-excavation, the model training can be completed through sample learning to infer reasonable blasting parameters. The improved optimization scheme reduces the average over excavation by 54.8%.

Key words: tunnel, three-dimensional laser scanning, back propagation neural network; blasting parameters optimization, over- and under-excavation identification