• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2026, Vol. 46 ›› Issue (1): 113-123.DOI: 10.3973/j.issn.2096-4498.2026.01.009

• 研究与探索 • 上一篇    下一篇

倒扣增强型波纹钢构件抗弯性能试验研究及理论分析

武飞1, 2, 刘保东1, *, 张钰1, 3, 张继磊4, 孔骁5, 武亦彬1, 王志宏6   

  1. (1. 北京交通大学土木建筑工程学院, 北京 100044; 2. 中国铁路设计集团有限公司, 天津 300308; 3. 山东大学齐鲁交通学院, 山东 济南 250002; 4. 中国水利水电科学研究院 流域水循环模拟与调控国家重点实验室, 北京 100038; 5. 中铁工程设计咨询集团有限公司, 河南 郑州 236831;6. 衡水益通管业股份有限公司, 河北 衡水 053499)
  • 出版日期:2026-01-20 发布日期:2026-01-20
  • 作者简介:武飞(1996—),男,河北石家庄人,北京交通大学土木工程专业在读博士,研究方向为桥梁工程。E-mail: 20115012@bjtu.edu.cn。*通信作者: 刘保东, E-mail: baodongliu@vip.sina.com。

Experimental Study and Theoretical Analysis on Flexural Performance of Inverted Reinforced Corrugated Steel Components

WU Fei1, 2, LIU Baodong1, *, ZHANG Yu1, 3, ZHANG Jilei4, KONG Xiao5, WU Yibin1, WANG Zhihong6   

  1. (1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China; 2. China Railway Design Corporation, Tianjin 300308, China; 3. School of Qilu Transportation, Shandong University, Jinan 250002, Shandong, China; 4. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; 5. China Railway Engineering Design and Consulting Group Co., Ltd., Zhengzhou 236831, Henan, China; 6. Hengshui Yitong Pipe Industry Co., Ltd., Hengshui 053499, Hebei, China)
  • Online:2026-01-20 Published:2026-01-20

摘要: 为解决埋置式波纹钢结构承载力和刚度不足的问题,提出倒扣增强型波纹钢构件,并针对增强肋宽度、是否填充混凝土等工况进行四点弯曲试验,研究构件的抗弯性能和部件之间的相互作用规律。基于部分相互作用理论构建理论模型,利用Python语言基于试射法和向前迭代差分法编制抗弯性能求解程序。结果表明: 1)相较于同等波形的波纹钢构件,倒扣增强型波纹钢构件极限抗弯承载力提高1.0~2.5倍,抗弯刚度提高1.3~6.2倍,组合受力特性使构件抗弯承载力和刚度的提高量大于用钢量的增长量; 2)在空腔内灌注混凝土可使构件的承载力和刚度得到进一步提升,波纹钢的衬托和约束作用使混凝土作用得到发挥,在波纹钢和混凝土之间进一步增加栓钉连接件对抗弯承载力的影响不明显; 3)基于部分相互作用理论推导得到平衡方程和变形协调方程以及界面切向应力和内力的关系,利用试射法和向前迭代差分法编制抗弯性能求解程序。通过计算结果与试验结果的对比表明,求解程序能复现构件的刚度退化过程,具有良好的鲁棒性和收敛性。

关键词: 隧道工程, 倒扣增强型波纹钢构件, 抗弯性能, 部分相互作用理论, 求解程序

Abstract: Embedded corrugated steel components exhibit insufficient bearing capacity and stiffness. Therefore, inverted reinforced corrugated steel components are constructed. The flexural performance and interactions between components are examined using four-point bending tests under different reinforcement rib widths and in the presence and absence of concrete fill. Further, a theoretical model is proposed based on the partial interaction theory. Finally, a flexural performance solution program is prepared using the test-shot method and forward iterative difference method, implemented in Python. The findings are as follows. (1) Compared with traditional corrugated steel components with the same waveform, the flexural load capacity and rigidity of the inverted reinforced corrugated steel components increase by 1.0-2.5 and 1.3-6.2 times, respectively. The combined stress characteristics increase the flexural capacity and stiffness more than the steel consumption. (2) Filling the cavity with concrete further enhances the bearing capacity and stiffness. The supporting and restraining effects of the corrugated steel components enable the full performance of concrete. Stud connectors between corrugated steel components and concrete do not substantially enhance the bearing capacity. (3) Based on the partial interaction theory, the equilibrium and deformation coordination equations and the relationship between the interface tangential stress and internal force are derived. The solution program for the bending performance is developed using the test-shot and forward iterative difference methods. A comparison between computational and experimental results confirms that the solution program can reproduce the member stiffness degradation process with good robustness and convergence.

Key words: tunnel engineering, inverted reinforced corrugated steel component, flexural performance, partial interaction theory, solution program