• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2026, Vol. 46 ›› Issue (1): 69-79.DOI: 10.3973/j.issn.2096-4498.2026.01.005

• 研究与探索 • 上一篇    下一篇

基于XFEM和响应面法的某地铁车站基坑近接既有已损建筑物施工扰动影响分区

雷明锋1, 2, 李倡万1, 杨鹏亮1, 贾朝军1, 李垂忝3   

  1. (1. 中南大学土木工程学院, 湖南 长沙 410075; 2. 高速铁路建造技术国家工程研究中心,湖南 长沙 410075; 3. 南昌轨道交通集团有限公司地铁项目管理分公司, 江西 南昌 330200)
  • 出版日期:2026-01-20 发布日期:2026-01-20
  • 作者简介:雷明锋(1982—),男,湖南祁东人,2013年毕业于中南大学,土木工程专业,博士,教授,现从事隧道与地下工程研究工作。 E-mail: mingdfenglei@csu.edu.cn。

Impact Zoning of Construction Disturbance on Nearby Existing Damaged BuildingsInduced by Foundation Pit of a Metro Station Based on Extended Finite Element Method and Response Surface Method

LEI Mingfeng1, 2, LI Changwan1, YANG Pengliang1, JIA Chaojun1, LI Chuitian3   

  1. (1. School of Civil Engineering, Central South University, Changsha 410075, Hunan, China; 2. National Engineering Research Center of High-speed Railway Construction Technology, Changsha 410075, Hunan, China; 3. Metro Project Management Branch, Nanchang Rail Transit Group Co., Ltd., Nanchang 330200, Jiangxi, China)
  • Online:2026-01-20 Published:2026-01-20

摘要: 新建基坑施工会对邻近既有建筑产生扰动影响,如何对施工扰动程度进行快速有效评估以合理制定设计与施工方案是亟待解决的工程难点。鉴于此,依托实际工程,通过有限元FEM-扩展有限元XFEM两阶段数值模型开展多工况分析,与实测数据对比验证模型的可靠性,进而构建响应面预测模型,结合参数敏感性分析,建立以裂缝扩展面积为指标的基坑近接施工参数与建筑物初始损伤程度的影响分区。研究结果表明: 1)FEM-XFEM两阶段模型适用于分析新建基坑施工扰动下建筑物裂缝扩展问题。2)裂缝扩展面积与扰动等级显著相关,处在Ⅱ级影响工况的裂缝扩展面积大多在0.8~1.4 m2,可将0.8 m2与1.4 m2作为Ⅰ/Ⅱ、Ⅱ/Ⅲ区分界阈值。3)基坑与建筑物之间的距离D与既有建筑物裂缝扩展面积呈现显著相关性,D > 21 m时为Ⅰ级影响,3.9 m< D≤21 m时为Ⅱ级影响, D ≤ 3.9 m时为Ⅲ级影响。4)考虑建筑物初始损伤时,当初始裂缝长度为墙体长度41%以下且宽度为墙体厚度67%以下,基坑施工扰动为Ⅰ级影响; 当初始裂缝长度达到墙体长度66%以上或宽度达到墙体厚度83%以上,基坑施工扰动为Ⅲ级影响。

关键词: 地铁车站, 基坑施工, 建筑物损伤, 裂缝扩展, 扩展有限元法, 两阶段分析法, 响应面法

Abstract: The construction of new foundation pits inevitably disturbs adjacent existing buildings. Rapid and effective assessment of the degree of construction-induced disturbance is therefore a critical engineering challenge for the rational formulation of design and construction schemes. In this study, a case-based multicondition analysis is implemented using a two-stage numerical modeling framework that integrates the finite element method (FEM) and the extended finite element method (XFEM). The reliability of the proposed model is validated through comparison with field-measured data. Subsequently, a response surface-based prediction model is developed. Based on the crack expansion area and parameter sensitivity analysis, impact zoning of construction disturbance on buildings with varying initial damage levels is evaluated in relation to adjacent construction parameters. The results demonstrate the following: (1) The proposed FEM-XFEM two-stage model is effective for analyzing crack propagation in buildings subjected to disturbances induced by newly constructed foundation pits. (2) The crack propagation area shows a strong correlation with disturbance intensity. Under level Ⅱ influence conditions, the crack propagation area mainly ranges from 0.8 to 1.4 m2; therefore, 0.8 m2 and 1.4 m2 can be adopted as threshold values distinguishing influence levels Ⅰ/Ⅱ and Ⅱ/Ⅲ, respectively. (3) The distance between the foundation pit and the existing building (D) shows a clear correlation with the crack propagation area. Specifically, when D > 21 m, 3.9 m < D≤ 21 m, and D≤ 3.9 m, the corresponding influence levels are Ⅰ, Ⅱ, and Ⅲ, respectively. (4) When initial building damage is considered, foundation pit construction is classified as level Ⅰ influence if the initial crack length is less than 41% of the wall length and the crack width is less than 67% of the wall thickness; whereas it is classified as level Ⅲ influence when the initial crack length exceeds 66% of the wall length or the crack width exceeds 83% of the wall thickness.

Key words: metro station, foundation pit construction, building damage, crack expansion, extended finite element method, two-stage analysis method, response surface method