• 中国科学引文数据库(CSCD)核心期刊
  • 中文核心期刊中文科技核心期刊
  • Scopus RCCSE中国权威学术期刊
  • 美国EBSCO数据库 俄罗斯《文摘杂志》
  • 《日本科学技术振兴机构数据库(中国)》
二维码

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (4): 698-704.DOI: 10.3973/j.issn.2096-4498.2024.04.008

• 研究与探索 • 上一篇    下一篇

黏土地层泥水劈裂伸展压力及路径试验研究

杨公标12, 袁大军3, 陈健1 2, 王滕3, 韩冰宇3   

  1. ( 1. 中铁十四局集团有限公司, 山东 济南 250014 2. 中国铁建水下隧道工程实验室, 山东 济南 250014;3. 北京交通大学土木建筑工程学院, 北京 100044)

  • 出版日期:2024-04-20 发布日期:2024-05-24
  • 作者简介:杨公标(1989—),男,山东菏泽人,2021年毕业于北京交通大学,土木工程专业,博士,高级工程师,现从事水下盾构隧道领域的技术研发工作。 Email: gbyang526@163.com。

Experimental Study on Slurry Pressure and Propagation Path of Soil Fracturing During Slurry Shield Tunneling in Clay Stratum

YANG Gongbiao1, 2, YUAN Dajun3, CHEN Jian1, 2, WANG Teng3, HAN Bingyu3   

  1. (1. China Railway 14th Bureau Group Co., Ltd., Jinan 250014, Shandong, China;2. China Railway Construction Underwater Tunnel Engineering Laboratory, Jinan 250014, Shandong, China;3. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China)

  • Online:2024-04-20 Published:2024-05-24

摘要: 为解决水下盾构隧道修建过程中由于泥水支护压力过大导致的掌子面前方地层劈裂,以及劈裂发生后如何防止裂缝伸展至水底地表等难题,采用大型三轴劈裂试验平台进行泥水劈裂伸展试验,测得裂缝伸展过程中的泥水压力及裂缝伸展路径,并研究泥水黏度及应力状态对伸展压力及路径的影响。结果表明: 1)泥水黏度较小时,裂缝伸展过程中劈裂压力基本不变; 泥水黏度较大时,裂缝伸展过程中劈裂压力逐渐增大。2)启裂压力和伸展压力均随着泥水黏度的增大而逐渐增大,但增大速度逐渐减小;伸展压力随围压线性增大,但增大速率略小于启裂压力。3)通过对比不同工况下盲孔试样的裂缝倾角可知,裂缝倾角仅与轴压和围压的压差相关。4)实际施工中建议泥水黏度大于21 Pa·s5)当隧道埋深变化较大时,应实时调整泥水压力。6)当初始劈裂发生后,泥水支护压力会骤降,此时不应过快地补充泥水压力,而应采取加快掘进速度的方法快速通过。

关键词: 水下隧道, 泥水盾构, 劈裂试验, 泥水黏度, 伸展压力, 裂缝形态

Abstract: In shield tunneling through clay strata, the stratum ahead of the tunnel face fractures owing to excessive slurry support pressure, with the fractures propagating to the surface. Understanding the propagation pressure and the path of soil fracturing is crucial for mitigating these issues. To this end, a large triaxial fracturing test platform is established to examine the slurry pressure and propagation path of soil fracturing. The study also considers the effects of slurry viscosity and stress conditions. The experimental findings indicate the following: (1) With low slurry viscosity, the fracturing pressure remains constant during the fracture propagation process. With high slurry viscosity, the fracturing pressure gradually increases during the propagation process. (2) Both the initiation and propagation pressures increase with slurry viscosity, although the rate of increase diminishes over time. The propagation pressure increases linearly with confining pressure, albeit at a slightly lower rate than the initiation pressure. (3) A comparative analysis of fracture inclination angles in blind hole samples under various conditions reveals that the inclination angle of fractures correlates only with the pressure differential between axial and confining pressures. (4) Practical recommendations for construction suggest maintaining slurry viscosity above 21 Pa·s. (5) When buried depth varies greatly, the slurry pressure should be adjusted in real time with significant variations in tunnel depth. (6) Following initial fracturing, a sharp drop in slurry support pressure occurs, suggesting that tunneling should be expedited rather than replenishing slurry pressure.

Key words: underwater tunnel, slurry shield, fracturing test, slurry viscosity, propagation pressure, fracture morphology