• 中国科学引文数据库(CSCD)核心期刊
  • 中文核心期刊中文科技核心期刊
  • Scopus RCCSE中国权威学术期刊
  • 美国EBSCO数据库 俄罗斯《文摘杂志》
  • 《日本科学技术振兴机构数据库(中国)》
二维码

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (4): 783-792.DOI: 10.3973/j.issn.2096-4498.2024.04.016

• 规划与设计 • 上一篇    下一篇

国道G228线汕头湾跨海隧道总体设计方案研究

王洪刚1, 徐莹晖2   

  1. (1. 中铁第六勘察设计院集团有限公司, 天津 300308 2. 广东交通职业技术学院, 广东 广州 510650

  • 出版日期:2024-04-20 发布日期:2024-05-24
  • 作者简介:王洪刚(1989—),男,辽宁辽阳人,2014年毕业于北京交通大学,道路与铁道工程专业,硕士,高级工程师,现从事市政、公路及水下隧道路线设计研究工作。 Email: crlgcwhg@163.com。

Design Scheme for Shantou Bay CrossSea Tunnel on National Highway G228

WANG Honggang1, XU Yinghui2   

  1. (1. China Railway Liuyuan Group Co., Ltd., Tianjin 300308, China; 2. Guangdong Communication Polytechnic, Guangzhou 510650, Guangdong, China)

  • Online:2024-04-20 Published:2024-05-24

摘要:

汕头湾跨海隧道作为国道G228汕头段控制性工程,总体设计难度大。为了科学、安全、经济地建设汕头湾跨海隧道,结合两岸城市规划、工程建设环境和环境敏感点等控制因素,采用工程类比、数值计算、模型分析等理论研究方法,对跨海隧道选址、接线、埋深、断面布置、通风及防灾救援等关键问题进行研究和专题论证,得出如下主要结论: 1)跨海隧道选址及接线应以城市规划为基础,结合交通特性、路网结构、沿线用地等因素综合确定,是控制风险、降低投资和保障交通功能的关键; 2)结合海床演变模型冲刷包络线,盾构段最小覆土不仅要满足掘进及运营期抗浮安全,还要尽量避免长距离穿越上软下硬地层; 3)跨海段采用分段纵向+重点排烟的通风方案,解决长距离跨海隧道通风难题; 4)盾构段采用人行滑梯或楼梯逃生的纵向疏散模式,明挖段采用横向疏散模式,可保障高地震烈度区跨海隧道的防灾疏散。

关键词: 跨海隧道, 大直径盾构隧道, 总体设计, 理论研究, 防灾疏散

Abstract:

The Shantou Bay crosssea tunnel is a control project of the Shantou section of national highway G228 with a complex overall design. The authors consider how to construct the Shantou Bay crosssea tunnel scientifically, safely, and economically based on the control factors for urban planning, the environment for engineering construction, and sensitive environmental concerns on both sides of the strait. Thus, the key problems related to site selection, connection, buried depth, section layout, ventilation, disaster prevention and evacuation for the crosssea tunnel are studied and visualized using engineering analogy, numerical calculations, and model analysis. Some of the findings are as follows: (1) The location and connection of the crosssea tunnel should be determined based on urban planning, traffic characteristics, road network structure, and land use along the line; these are key to controlling risk, reducing investment, and ensuring traffic flow. (2) Based on the scouring envelope of the seabed evolution model, the minimum soil cover for the shield section should meet the safety requirement for antifloating during excavation and operation, and the shield section should prevent longdistance crossing of the upper soft and lower hard strata. (3) In the crosssea section, a ventilation scheme for the segmented longitudinal and key smoke exhaust is used. (4) Longitudinal and horizontal evacuation modes with a pedestrian slide or stairs are used in the shield and opencut sections, respectively; these modes guarantee disaster prevention and evacuation of the crosssea tunnel in an area with high seismic intensity.

Key words:

crosssea tunnel, largediameter shield tunnel, overall design, theoretical research, disaster prevention and evacuation