• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (7): 1365-1376.DOI: 10.3973/j.issn.2096-4498.2024.07.004

• 研究与探索 • 上一篇    下一篇

基于地基梁理论的断层非线性错动下隧道纵向响应研究

铁明亮1, 常铭宇2, 詹胜文1, 申玉生2, 3*, 左雷彬1, 陈孔福2, 4, 张熙2   

  1. (1. 中国石油天然气管道工程有限公司 河北省管道隧道和跨越技术创新中心, 河北 廊坊 065000; 2. 西南交通大学 交通隧道工程教育部重点实验室, 四川 成都 610031;3. 西南交通大学 陆地交通地质灾害防治技术国家工程研究中心, 四川 成都 610031;4. 中交第二公路勘察设计研究院有限公司, 湖北 武汉 430056)

  • 出版日期:2024-07-20 发布日期:2024-08-05
  • 作者简介:铁明亮(1983—),男,河南安阳人,2010年毕业于长安大学,桥梁与隧道工程专业,硕士,高级工程师,现从事石油管道隧道的建设工作。E-mail: 26177995@qq.com。*通信作者: 申玉生, E-mail: 26177995@qq.com。

Longitudinal Response of Tunnels Under Nonlinear Fault Displacement Based on Foundation Beam Theory

TIE Mingliang1, CHANG Mingyu2, ZHAN Shengwen1, SHEN Yusheng2, 3, *, ZUO Leibin1, CHEN Kongfu2, 4, ZHANG Xi2   

  1. (1. Hebei Provincial Pipe Tunnel and Crossing Technology Center, China Petroleum Pipeline Engineering Corporation, Langfang 065000, Hebei, China; 2. Key Laboratory of Transportation Tunnel Engineering, the Ministry of Education, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; 3. National Engineering Research Center of Geological Disaster Prevention Technology in Land Transportation, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; 4. CCCC Second Highway Consultants Co., Ltd., Wuhan 430056, Hubei, China)

  • Online:2024-07-20 Published:2024-08-05

摘要: 为研究走滑断层错动作用下隧道结构的纵向响应,采用Pasternak双参数地基和弹性梁理论,建立穿越多破裂面断层隧道在断层强制位错作用下的纵向响应微分方程,通过数学方法求解获得隧道结构在断层位错作用下的纵向变形、内力响应,并通过模型试验和数值模拟对理论解析模型的有效性进行验证。在此基础上,采用理论解析模型对隧道结构纵向响应的影响因素进行敏感性分析。主要得出以下结论: 1)理论解析模型计算得到的隧道纵向变形和弯矩变化趋势与模型试验和数值模拟结果完全一致,但数值上趋于保守; 2)断层错动的位移形式和围岩-隧道结构的刚度匹配关系对隧道结构纵向响应的影响较大,应根据具体的断层破碎带形式选择合适的断层错动位移函数; 3)随着围岩-隧道结构刚度比的增大,围岩对隧道结构的约束作用随之增大,隧道结构纵向内力集中现象增加,但受断层错动影响的范围减小,在具体工程设计中应结合施工成本、抢通时间等来选择合适的围岩-隧道结构刚度匹配关系。

关键词: 隧道工程, 断层错动, 模型试验, 弹性地基梁, 理论解析模型

Abstract: Pasternak′s double-parameter foundation and elastic beam theory are used to establish a differential equation for measuring the longitudinal response of tunnels that traverse multiple fault surfaces when they are subjected to forced fault displacement. By solving this equation mathematically, the longitudinal deformation and internal force responses of the tunnel structure under fault displacement can be derived. Subsequently, the effectiveness of the proposed theoretical model is validated using both physical model experiments and numerical simulations. Based on these experiments and simulations, a sensitivity analysis of the factors that influence the longitudinal dynamic response of tunnel structures is conducted using the theoretical model. The main conclusions are as follows. (1) The value trends observed with the theoretical analysis model are entirely consistent with those of the model experiments and numerical simulations, although the numerical values are somewhat conservative. (2) The displacement pattern of the fault slip and the stiffness match between the surrounding rock and the lining significantly impact the tunnels longitudinal response. An appropriate fault slip displacement function based on the specific form of the fault fracture zone must be selected for accurate analysis results. (3) As the stiffness ratio between the surrounding rock and the lining increases, the effect of the constraint of the surrounding rock on the tunnel structure intensifies, which leads to a greater concentration of the internal forces in the tunnels longitudinal response. However, the range that is affected by the fault slip decreases. Therefore, in practical engineering design, the surrounding rock and the lining stiffness should be appropriately matched by considering factors such as the construction costs and times of rapid access.

Key words: tunnel engineering, fault rupture, model test, elastic foundation beam, analytical solution