• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (10): 2069-2076.DOI: 10.3973/j.issn.2096-4498.2024.10.015

• 研究与探索 • 上一篇    下一篇

基于隧道实测试验的南京市机动车污染物排放特征研究

袁嘉明1,谢静超1,* 薛1, 柴赫楠1蒋振雄2王毅宁1,刘加平1,3   

  1. (1. 北京工业大学 绿色建筑环境与节能技术北京市重点试验室, 北京 100124; 2. 江苏省交通工程建设局, 江苏 南京 210001; 3. 西安建筑科技大学 西部绿色建筑国家重点试验室, 陕西 西安 710055)

  • 出版日期:2024-10-20 发布日期:2024-11-12
  • 作者简介:袁嘉明(2001—),男,北京人,北京工业大学土木水利专业在读硕士,研究方向为隧道通风。E-mail: yuanjm@emails.bjut.edu.cn。

Emission Characteristics of Vehicle Pollutants Based on a Tunnel Experiment in Nanjing, China

YUAN Jiaming1, XIE Jingchao1, *, XUE Peng1, CHAI Henan1, JIANG Zhenxiong2, WANG Yining1, LIU Jiaping1, 3   

  1. (1. Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing 100124, China; 2. Jiangsu Traffic Engineering Construction Bureau, Nanjing 210001, Jiangsu, China; 3. State Key Laboratory of Western Green Building, Xi′an University of Architecture and Technology, Xi′an 710055, Shaanxi, China)

  • Online:2024-10-20 Published:2024-11-12

摘要: 为深入研究水下特长公路隧道机动车尾气污染物的排放及分布特征,对南京应天大街长江隧道的交通特征、环境参数和污染物排放质量浓度进行实测研究。采用摄像采集法统计隧道交通特征,结果表明: 车辆交通数据与环境数据均呈现明显的日周期变化规律,早高峰车流量显著大于晚高峰,车速与车流量呈负相关。夜间测试结果表明: 1)隧道内部污染物质量浓度沿行车方向的变化趋势为先增后减,由于隧道呈现V形的地势特点,PM2.5质量浓度峰值出现在V形底部; 2)受到隧道出口风机开启的影响,CO质量浓度峰值出现位置较PM2.5稍有滞后。昼间测试时风机关闭,污染物质量浓度峰值出现在隧道出口,早高峰期间隧道出COPM2.5的质量浓度峰值分别为31.0 mg/m3 145 μg/m3,分别为质量浓度限值的3.1倍和2倍。采用皮尔逊(Pearson)相关系数法对各相关参数进行相关性检验,CO质量浓度与汽油车数量呈强正相关,PM2.5质量浓度与柴油车数量呈强正相关,2种污染物质量浓度均与风速呈强负相关。

关键词: 机动车尾气污染物, 水下隧道, 实测试验, CO质量浓度, PM2.5质量浓度

Abstract: In this study, the traffic characteristics, environmental parameters, and concentration of vehicle exhaust pollutants of the Yingtian avenue in the Yangtze river-crossing tunnel in Nanjing, China, are examined to thoroughly investigate the emission and distribution characteristics of vehicle exhaust pollutants. The traffic characteristics are statistically analyzed using video-recording methods, revealing a distinct diurnal variation pattern, with drastically higher traffic flow in the morning peak than the evening peak, and an inverse relationship between vehicle speed and traffic flow. Night-time testing indicates that pollutant concentrations inside the tunnel initially increase and then decrease along the length of the tunnel, with the PM2.5 concentration peaking at the bottom of the Vshaped terrain of the tunnel. The CO concentration peak appears slightly later than the PM2.5 peak because of the influence of the activated fans at the tunnel exit. During daytime testing, when the fans are off, the pollutant concentration peaks at the tunnel exit. In the morning peak, the maximum concentrations of CO and PM2.5 at the tunnel exit are 31.0 mg/m3 and 145 μg/m3, respectively, which are 3.1 and 2 times the concentration limits, respectively. The Pearson correlation analysis conducted to examine the relationships between various parameters reveals a strong positive correlation between the CO concentration and the number of gasoline vehicles and a strong positive correlation between the PM2.5 concentration and the number of diesel vehicles. Both pollutants are strongly negatively correlated with wind speed in the tunnel.

Key words: vehicle exhaust pollutant, underwater tunnel, field measurement, CO concentration, PM2.5 , concentration