• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (S2): 300-308.DOI: 10.3973/j.issn.2096-4498.2024.S2.029

• 研究与探索 • 上一篇    下一篇

内燃牵引高海拔隧道气流特性及自然通风可行性分析

郑嘉瑜1, 孙三祥1 2 3,*, 田维海1   

  1. 1. 兰州交通大学环境与市政工程学院, 甘肃 兰州 730070; 2. 兰州交通大学 寒旱地区水资源综合利用教育部工程研究中心, 甘肃 兰州 730070; 3. 兰州交通大学 甘肃省轨道交通力学应用实验室, 甘肃 兰州 730070)

  • 出版日期:2024-12-20 发布日期:2024-12-20
  • 作者简介:郑嘉瑜(1995—),女,陕西西安人,兰州交通大学土木水利在读硕士,主要研究方向为隧道通风。 E-mail: 357253815@qq.com。 *通信作者: 孙三祥, E-mail: sunsanxiang@mail.lzjtu.cn。

Feasibility Analysis of Natural Ventilation and Airflow Characteristics for Diesel-Hauled Train Pollutants in High-Altitude Tunnels

ZHENG Jiayu1, SUN Sanxiang1, 2, 3, *, TIAN Weihai1   

  1. (1. School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China; 2. Engineering Research Center of Comprehensive Utilization of Water Resources in Cold and Arid Regions, the Ministry of Education, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China; 3. Gansu Provincial Laboratory of Rail Transit Mechanics Application, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China)

  • Online:2024-12-20 Published:2024-12-20

摘要: 为解决高海拔铁路隧道在运营期间污染物扩散规律缺乏数值模拟及理论数据支撑的问题,对内燃牵引高海拔隧道利用活塞风实现自然通风的可行性进行模拟分析。基于CFD软件建立高海拔单洞单线铁路隧道三维模型,以内燃机车排放的CO为特征污染物,基于不同自然风风速和风向条件下质量分数场模拟结果,定量分析外界自然风风速和风向对污染物扩散的影响,活塞风衰减特性和CO质量分数的时空变化规律,进而为高海拔隧道的运营通风设计提供理论支持,确保通风方案的安全性、有效性和科学性。结果表明: 1)内燃牵引列车尾部污染物扩散呈指数衰减规律。2)正向风速下CO衰减距离随风速增大而减小,反向风速则随风速增大而增大。3)在风速>3 m/s,不论风向,隧道内污染气体聚集质量分数通常都在30×10-6以下;在风速为2 m/s时,长度为4 km的高海拔隧道利用活塞风可在20 min内完成空气置换,确保空气质量达到安全标准。

关键词: 高海拔, 自然通风, 运营通风, 污染物扩散, 铁路隧道, 内燃牵引, 气流特性

Abstract: There is no numerical simulation and theoretical data support for diffusion patterns of pollutants in high-altitude railway tunnels during operation period. Thus, the diesel-hauled train pollutants ventilated by nature wind using piston wind in high-altitude tunnels is numerically simulated. A three-dimensional model of a high-altitude single-tube single-track railway tunnel is established using CFD software. The CO emissions from diesel locomotives is taken as the characteristic pollutant, and based on simulation results under different natural wind speeds and conditions, the impact of external natural wind speed and direction on pollutant diffusion, the attenuation characteristics of piston wind, and the spatiotemporal variation of CO concentration are quantitatively analyzed. These provide a theoretical support for the design of operational ventilation in high-altitude tunnels, ensuring the safety, effectiveness, and scientific rigor of the ventilation scheme. The results indicate that: (1) The diffusion of pollutants from a diesel-hauled train follows an exponential decay pattern. (2) Under positive wind speed, the CO attenuation distance decreases with increasing wind speed; whereas it increases with increasing wind speed under reverse wind speed. (3) Under a wind speed of over 3 m/s, the concentration of pollutants in the tunnel typically remains below 30×10-6, regardless of wind direction; under a wind speed of 2 m/s, a 4 km long high-altitude tunnel can achieve air replacement within 20 min using piston wind, ensuring that the air quality meets safety standards.

Key words: high altitude, natural ventilation, operational ventilation, pollutant dispersion, railway tunnel, diesel-hauled trains, airflow characteristics