• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (5): 964-974.DOI: 10.3973/j.issn.2096-4498.2025.05.011

• 规划与设计 • 上一篇    下一篇

非支配排序鲸鱼优化算法在深圳沿江沉管隧道管节长度优化中的应用

苏林王1, 2, 3, 赵一鸣1, 2, *, 王雪刚1, 2, 3, 左华楠1, 2, 3   

  1. 1. 中交四航工程研究院有限公司, 广东 广州 510230 2.中交交通基础工程环保与安全重点实验室, 广东 广州 510230; 3. 南方海洋科学与工程广东省实验室(珠海), 广东 珠海 519082)

  • 出版日期:2025-05-20 发布日期:2025-05-20
  • 作者简介:苏林王(1979—),男,福建仙游人,2017年毕业于华南理工大学,结构工程专业,博士,正高级工程师,现从事结构工程和港口工程施工等方面的研究工作。 E-mail: sulinwang@ccccltd.cn。 *通信作者: 赵一鸣, E-mail: zhaoym1999@163.com。

Application of Nondominated Sorting Whale Optimization Algorithm in Segment Length Optimization of Yanjiang Immersed Tunnel in Shenzhen, China

SU Linwang1, 2, 3, ZHAO Yiming1, 2, *, WANG Xuegang1, 2, 3, ZUO Huanan1, 2, 3   

  1. (1. CCCC Fourth Harbor Engineering Institute Co., Ltd., Guangzhou 510230, Guangdong, China; 2. CCCC Key Lab of Environmental Protection & Safety in Foundation Engineering of Transportation, Guangzhou 510230, Guangdong, China; 3. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, Guangdong, China)

  • Online:2025-05-20 Published:2025-05-20

摘要: 为解决沉管隧道管节长度传统优化算法在多目标优化中的局限性问题,提出一种基于非支配排序的改进鲸鱼优化算法(NDSWOA)。首先,分析沉管隧道管节长度对施工工期、造价及结构安全性的影响因素,并建立多目标优化模型; 然后,设计并实现NDSWOA算法,将非支配排序机制与鲸鱼优化算法相结合,以增强算法的全局搜索能力和解集多样性; 最后,选取深圳沿江沉管隧道项目为工程案例,采用NDSWOA优化管节长度,并与NSGA-IIMOEA/D等传统优化算法进行对比分析。试验结果表明: 1NDSWOA在处理沉管隧道管节长度优化问题时,展现出更快的收敛速度和更优的解质量,能够生成均匀分布的帕累托前沿解。2)相比于NSGA-IIMOEA/DNDSWOA在优化工期、造价和结构安全性方面表现更优,由此优化得到推荐管节长度为80 m,可在各优化目标之间取得平衡。

关键词: 沉管隧道, 管节长度优化, 非支配排序, 鲸鱼优化算法, 多目标优化

Abstract: To address the limitations of traditional algorithms in the multiobjective optimization of immersed tunnel segment lengths, an improved algorithm based on nondominated sorting whale optimization algorithm (NDSWOA) is proposed. First, the factors influencing construction duration, cost, and structural safety associated with segment length in immersed tunnels are analyzed, and a multiobjective optimization model is established. Second, the NDSWOA is designed and implemented by integrating nondominated sorting mechanism into the whale optimization algorithm to enhance global search capability and solution diversity. Finally, the NDSWOA is applied to optimize segment length in a case study of the Yanjiang immersed tunnel in Shenzhen, China. The results are compared with those obtained using traditional optimization algorithms such as NSGA- and MOEA/D. The experimental results reveal the following: (1) The NDSWOA demonstrates faster convergence speed and superior solution quality in solving the immersed tunnel segment length optimization problem, effectively generating a well-distributed Pareto front. (2) Compared with NSGA-and MOEA/D, the NDSWOA achieves better performance in optimizing construction duration, cost, and structural safety, suggesting an 80 m segment length as an optimal trade-off among the optimization objectives.

Key words: immersed tunnel, segment length optimization, nondominated sorting, whale optimization algorithm, multiobjective optimization