• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (7): 1328-1335.DOI: 10.3973/j.issn.2096-4498.2025.07.009

• 研究与探索 • 上一篇    下一篇

基于风速安全系数的交通隧道瓦斯分级标准优化研究

庄俊1, 2, 赵树磊1, 2, 温斯逊1, 2, 郭亚林1, 2, 郭宗程1, 2, 郭春1, 2, *   

  1. (1. 西南交通大学土木工程学院, 四川 成都 610031; 2. 西南交通大学 交通隧道工程教育部重点实验室, 四川 成都 610031)
  • 出版日期:2025-07-20 发布日期:2025-07-20
  • 作者简介:庄俊(2001—),男,江西吉安人,西南交通大学隧道工程专业在读硕士,研究方向为隧道与地下工程。E-mail: 2737796684@qq.com。 *通信作者: 郭春, E-mail: guochun@swjtu.edu.cn。

Optimization of Gas Classification Standards for Traffic Tunnels Based on Wind Speed Safety Factor

ZHUANG Jun1, 2, ZHAO Shulei1, 2, WEN Sixun1, 2, GUO Yalin1, 2, GUO Zongcheng1, 2, GUO Chun1, 2, *   

  1. (1. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; 2. Key Laboratory of Transportation Tunnel Engineering, the Ministry of Education, Southwest Jiaotong University, Chengdu 610031, Sichuan, China)
  • Online:2025-07-20 Published:2025-07-20

摘要: 针对现行交通隧道瓦斯分级标准中安全系数取值过大且与实际情况偏差显著的问题,提出以隧道断面风速最大值与平均值的比值作为风速安全系数替代传统固定值,以优化分级标准的准确性。通过数值模拟方法,对6种不同断面面积的交通隧道在4种稳定回风风速工况下的通风流场进行分析,重点研究风速安全系数的空间分布规律及其与断面面积的关联性。研究结果表明: 1)掌子面区域流场具有显著的非均匀特征,隧道通风流场可划分为涡流区、过渡区和稳定区3个区域,其中风速安全系数在靠近涡流区时呈现较大波动,随着与涡流区距离的增加而逐渐趋于稳定; 2)基于稳定区风速安全系数的分布特征,提出按断面面积将交通瓦斯隧道划分为小断面(40~80 m2)、中断面(80~110 m2)和大断面(≥110 m2)3类,并推荐其安全系数取值分别为1.24、1.20、1.16; 3)根据修正后的安全系数,明确了3类隧道微瓦斯、低瓦斯和高瓦斯工区的绝对瓦斯涌出量界限值,提出交通隧道瓦斯分级标准,可为瓦斯隧道设计与施工提供借鉴。

关键词: 瓦斯隧道, 瓦斯分级标准, 隧道通风, 风速不均性, 数值模拟, 安全系数

Abstract: To address the issues of excessively high wind safety factors and significant deviations from actual conditions in current gas classification standards for traffic tunnels, the authors propose an optimization method that replaces the conventional fixed safety factor value with the ratio of the maximum to the average wind speed in the tunnel cross-section. Furthermore, numerical simulation techniques are employed to systematically analyze the ventilation flow fields of six traffic tunnels with different cross-sectional areas under four steady return-air wind speed scenarios, focusing on the spatial distribution characteristics of the wind speed safety factor and its relationship with cross-sectional area. The main findings are as follows. (1) The flow field near the tunnel face exhibits pronounced non-uniformity and can be divided into three distinct zones: the vortex zone, the transition zone, and the stable zone. The wind speed safety factor shows considerable fluctuations near the vortex zone but gradually stabilizes with increased distance from the face. (2) Based on the distribution characteristics of the safety factor within the stable zone, a new classification framework is established, categorizing traffic tunnels into small (40-80 m2), medium (80-110 m2), and large (≥110 m2) cross-sectional types, with recommended safety factors of 1.24, 1.20, and 1.16, respectively. (3) By refining the safety factor values, the threshold absolute gas emission rates for micro-gas, low-gas, and high-gas zones in the three tunnel categories are redefined, thereby establishing an optimized gas classification standard for traffic tunnels. These results offer important technical guidance for the design and construction of gas-prone traffic tunnels.

Key words: gas tunnel, gas classification standards, tunnel ventilation, wind speed heterogeneity, numerical simulation, safety factor