• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (7): 1317-1327.DOI: 10.3973/j.issn.2096-4498.2025.07.008

• 研究与探索 • 上一篇    下一篇

基于花岗岩机制砂的新型盾尾同步注浆浆液研发及性能研究

杨纪晨1, 刘维1, *, 杨嘉文1, 贺韶云1, 梁家馨2   

  1. (1. 苏州大学轨道交通学院, 江苏 苏州 215000; 2. 太原理工大学土木工程学院, 山西 太原 030024)
  • 出版日期:2025-07-20 发布日期:2025-07-20
  • 作者简介:杨纪晨(2000—),男,安徽合肥人,苏州大学轨道交通运输专业在读硕士,研究方向为盾构隧道盾尾注浆材料。E-mail: 1845711410@qq.com。*通信作者: 刘维, E-mail: ggoulmmeng@suda.edu.cn。

Development and Performance Study of a Novel Shield Tail Synchronous Grouting Material Using Granite Manufactured Sand

YANG Jichen1, LIU Wei1, *, YANG Jiawen1, HE Shaoyun1, LIANG Jiaxin2   

  1. (1. School of Rail Transportation, Soochow University, Suzhou 215000, Jiangsu, China; 2. College of Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China)
  • Online:2025-07-20 Published:2025-07-20

摘要: 为解决盾构工程建设中天然砂资源稀缺、工程造价快速上涨的问题,响应节能减排、保护环境的政策号召,采用机制砂替代天然砂,研制一种以花岗岩机制砂为细骨料的新型盾构同步注浆材料。研究采用室内试验及微观测试方法对浆液性能进行分析,首先,通过配制不同细度模数的花岗岩机制砂浆,探讨机制砂级配对浆液性能的影响; 其次,通过正交试验及回归分析,测试该新型材料的基本性能参数并优化浆液配比; 最后,通过扫描电子显微镜(SEM)技术,分析浆液固结体的微观形貌与内部结构。研究结果表明: 1)研发的新型注浆材料具有后期强度大、凝结时间快、流动度良好、泌水率低、固结收缩率小等特点; 2)当花岗岩机制砂细度模数设计为2.6~3.0时,所配制的浆液强度显著提升,且泌水率及收缩率均处于良好水平; 3)当花岗岩机制砂细度模数为3、水胶比(水/胶凝材料)为0.8、胶砂比(砂/胶凝材料)为1.0、膨胶比(膨润土/胶凝材料)为0.15、灰粉比(水泥/粉煤灰)为0.8时,材料的性能表现最优,3 d抗压强度为0.92 MPa、28 d抗压强度为6.1 MPa、流动度为23 cm、稠度为12.5 cm、泌水率为2.5%、固结收缩率为4.0%,与传统浆液相比性能表现更优良。

关键词: 盾构隧道, 机制砂, 花岗岩, 同步注浆材料, 室内试验, 扫描电子显微镜(SEM)

Abstract: The scarcity of natural sand  in shield tunneling leads to higher construction costs. To promote energy conservation, reduce emissions, and protect the environment, the authors develop a novel shield tail synchronous grouting material that utilizes granite manufactured sand as a fine aggregate. Laboratory and microscopic testing methods are employed to evaluate the properties of the grout. First, granite mortar with varying fineness moduli is prepared, which allows us to investigate how the grading of manufactured sand affects the properties of the grout. Second, the basic performance parameters of the novel material are tested and the grout ratio is optimized through orthogonal experiments and regression analysis. Finally, the microstructure and internal structure of the grout solid block are analyzed using scanning electron microscopy. The results reveal the following: (1) The novel grouting material exhibits high late strength, a rapid setting time, good fluidity, a low bleeding rate, and minimal consolidation shrinkage. (2) When the fineness modulus of the granite manufactured sand is between 2.6 and 3.0, the grout strength is significantly enhanced, and bleeding and shrinkage rates remain at acceptable levels. (3) The optimal performance is achieved with a granite sand fineness modulus of 3, water-binder ratio (water/cementitious material) of 0.8, cementitious sand ratio (sand/cementitious material) of 1.0, swelling ratio (bentonite/cementitious material) of 0.15, and ash powder ratio (cement/fly ash) of 0.8. This composition results in a three-day compressive strength of 0.92 MPa, 28-day compressive strength of 6.1 MPa, fluidity of 23 cm, consistency of 12.5 cm, bleeding rate of 2.5%, and consolidation shrinkage rate of 4.0%, all of which outperform traditional grout.

Key words: shield tunnel, manufactured sand, granite, synchronous grouting material, laboratory test, scanning electron microscopy