• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (6): 1102-1111.DOI: 10.3973/j.issn.2096-4498.2025.06.005

• 研究与探索 • 上一篇    下一篇

瓦斯隧道抽采钻孔瓦斯体积分数实时计量模型设计及优化研究

刘勇1, 2, 余大炀1, 2, 张慧栋1, 2, *, 陈长江1, 2, 何岸3   

  1. (1. 河南理工大学安全科学与工程学院, 河南 焦作 454000;2. 煤炭安全生产与清洁高效利用省部共建协同创新中心, 河南 焦作 454000;3. 江南造船(集团)有限责任公司, 上海 200000)

  • 出版日期:2025-06-20 发布日期:2025-06-20
  • 作者简介:刘勇(1984—),男,山东临沂人,〖JP+2〗2012年毕业于重庆大学,安全技术及工程专业,博士,教授,现从事瓦斯灾害防治研究工作。E-mail: yoonliu@hpu.edu.cn。 *通信作者: 张慧栋, E-mail: zhanghuidong@hpu.edu.cn。

Design and Optimization of a Real-Time Gas Concentration Measurement Model for Gas Tunnel Extraction Boreholes

LIU Yong1, 2, YU Dayang1, 2, ZHANG Huidong1, 2, *, CHEN Changjiang1, 2, HE An3   

  1. (1. College of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China; 2. Provincial-Ministerial Collaborative Innovation Centre for Safe Production and Clean and Efficient Utilisation of Coal, Jiaozuo 454000, Henan, China; 3. Jiangnan Shipbuilding (Group) Co., Ltd., Shanghai 200000, China)

  • Online:2025-06-20 Published:2025-06-20

摘要: 钻孔孔口瓦斯体积分数的实时精准测量是实现瓦斯隧道智能化治理的关键。目前常用的可调谐半导体激光吸收光谱技术(TDLAS)在瓦斯隧道复杂环境中存在低体积分数检测精度不足等问题。为解决上述问题,构建一种集成波长调制光谱(WMS)与重心拉格朗日插值补偿算法的TDLAS测量系统,并结合钻孔气体组分、环境压力与温度变化对测量误差进行建模修正,提升系统在动态钻孔环境下的测量精度与稳定性。通过标准气体试验对系统性能进行验证,主要研究结论如下: 1)基于Beer-Lambert定律和HITRAN数据库参数,建立瓦斯体积分数TDLAS 反演模型,明确吸收谱线型函数与线强度是影响测量精度的关键因素,分析表明钻孔环境下采用Lorentz函数描述谱线展宽更为合理。2)针对温度与压力变化引起的谱线偏移问题,提出基于重心加权的拉格朗日插值补偿算法,实现了非稳态条件下的体积分数高精度修正,具备良好的数值稳定性与适应性。3)通过0.5%4.5%体积分数标准瓦斯气体在0~40 ℃内的温度扰动试验,验证了所提补偿方法可将系统最大测量误差控制在0.5%以内,显著优于未补偿状态。4)提出的测量系统实现了钻孔单孔瓦斯体积分数的高精度、动态监测,具备良好的环境适应性和工程应用潜力。

关键词: 抽采钻孔, 瓦斯隧道, 瓦斯体积分数, TDLAS技术, 补偿算法

Abstract: Real-time and accurate measurement of gas concentration at the borehole outlet is essential for the intelligent management of gas tunnels. Currently, tunable diode laser absorption spectroscopy (TDLAS), the widely used technique, suffers from reduced detection accuracy in the complex environments of gas tunnels. To overcome this limitation, a TDLAS-based measurement system is developed by integrating wavelength modulation spectroscopy with a centroid-weighted Lagrange interpolation compensation algorithm. The system models and corrects measurement errors caused by fluctuations in gas composition, ambient pressure, and temperature at the borehole outlet, thereby improving measurement accuracy and stability under dynamic conditions. System performance is experimentally validated using standard gas samples. The main findings are: (1) A gas concentration inversion model based on the Beer-Lambert law and HITRAN database parameters is established, identifying absorption line shape function and line strength as the primary factors influencing measurement accuracy. The Lorentzian function is found to be more suitable under near-atmospheric pressure and dynamically disturbed conditions. (2) To compensate for line shift and broadening due to temperature and pressure variations, a centroid-weighted Lagrange interpolation algorithm is proposed, achieving accurate gas concentration correction under unsteady-state conditions with high numerical stability and adaptability. (3) Experimental validation using 0.5% and 4.5% standard gases over a temperature range of 0 40 demonstrates that the proposed compensation method maintains measurement errors within 0.5%, significantly outperforming uncompensated measurements. (4) The developed system enables high-precision, dynamic monitoring of single-borehole gas concentrations, exhibits strong environmental adaptability.

Key words: extraction borehole, gas tunnel, gas concentration, tunable diode laser absorption spectroscopy technology, compensation algorithm