• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (11): 2168-2180.DOI: 10.3973/j.issn.2096-4498.2025.11.016

• 规划与设计 • 上一篇    下一篇

超大断面束合结构近距离下穿运营地铁车站建造方案

张中杰1, 2, 刘书1, 3, *, 唐泽人3, 吕培林1, 殷文涛1, 吴航1   

  1. (1. 上海市城市建设设计研究总院(集团)有限公司, 上海 200025;2. 天津大学建筑工程学院, 天津 300072; 3. 同济大学土木程学院, 上海 200092)
  • 出版日期:2025-11-20 发布日期:2025-11-20
  • 作者简介:张中杰(1976—),男,上海人,1998年毕业于同济大学,土木工程专业,本科,教授级高级工程师,主要从事轨道交通、地下空间与深基坑的设计与研究工作。E-mail: zhangzhongjie@sucdri.com。*通信作者: 刘书, E-mail: liushu@sucdri.com。

Construction of a Large-Section Underground Bundled Integrate Tunnel Closely Undercrossing an Operating Metro Station

ZHANG Zhongjie1, 2, LIU Shu1, 3, *, TANG Zeren3, LYU Peilin1, YIN Wentao1, WU Hang1   

  1. (1. Shanghai Urban Construction Design and Research Institute (Group) Co., Ltd., Shanghai 200025, China; 2. School of Civil Engineering, Tianjin University, Tianjin 300072, China; 3. College of Civil Engineering, Tongji University, Shanghai 200092, China)
  • Online:2025-11-20 Published:2025-11-20

摘要: 为解决软土地区新建地铁车站近距离暗挖下穿运营地铁设施的建设难题,开展40 m级超大断面宽度、0.01级超小覆跨比的束合结构建造方案研究。下穿段束合结构42.0 m(长)×41.6 m(宽)×9.6 m(高),距既有车站底板垫层0.2 m,采用钢骨混凝土柱2阶段托换方案,设计相应的梁柱刚接节点构造,实现双柱三跨的结构形式,并从管群顶进、预应力张拉、顶管设备选型3个方面形成环境影响系列控制措施。进一步,采用等效刚度实体单元模拟钢-混凝土复合管节,定义耦合单元及本构模拟管节间接缝,通过数值模拟手段开展空间受力性能研究。结果表明: 1)束合结构技术方案可满足安全使用要求,且对既有车站影响较小; 2)由于下穿段纵、横向尺寸相当,束合结构已非理想的横向受力状态,在纵向中部及纵梁管出现了较为明显的内力变形; 3)受工作井开挖影响,既有车站底板产生较为明显的隆起变形,束合结构顶管群0.2 m浅覆土顶进施工会增加下穿段两侧的隆起变形,而正上方的隆起变形是由承受既有车站上部覆土与自重产生的挠度减小导致。

关键词: 束合结构, 地铁车站, 下穿, 托换, 耦合单元

Abstract: Constructing metro stations that closely undercross operating metro stations in soft stratum is challenging. In this study, a case study is conducted on an underground bundled integrate tunnel (UBIT) with a cross-sectional width of 40 m and a cover-to-span ratio of 0.01. The underpass section, with dimensions of 42.0 m (length) × 41.6 m (width) × 9.6 m (height), is located 0.2 m away from the existing station slab. A two-stage underpinning scheme using steel-concrete columns is adopted, and a corresponding rigid beam-column joint is designed. A series of environmental impact control measures are established in three aspects: pipe jacking, prestress tensioning, and equipment selection. Furthermore, equivalent-stiffness solid elements are used to simulate steel-concrete pipes, and coupled elements are defined to simulate the joint between the pipes. Spatial mechanical performance analysis is conducted through numerical simulations. The results reveal the following: (1) The adopted technical scheme meets safety requirements and has minimal impact on the existing station. (2) Owing to the comparable longitudinal and transverse dimensions of the underpass section, the UBIT structure deviates from an ideal transverse force state, resulting in significant internal forces and deformations in the longitudinal midsection and beam pipes. (3) Owing to the excavation of the working shaft, the bottom slab of the existing station shows obvious uplift deformation. The shallow pipe-jacking construction at a depth of 0.2 m increases the uplift deformation on both sides of the underpass section, whereas the central area experiences a decrease in uplift owing to the deflection caused by the upper soil cover and self-weight of the existing station.

Key words: underground bundled integrate tunnel, metro station, underpass, underpinning, coupling element