• 中国科学引文数据库(CSCD)来源期刊
  • 中文核心期刊中文科技核心期刊
  • Scopus RCCSE中国核心学术期刊
  • 美国EBSCO数据库 俄罗斯《文摘杂志》
  • 《日本科学技术振兴机构数据库(中国)》
二维码

隧道建设(中英文) ›› 2017, Vol. 37 ›› Issue (S2): 121-127.DOI: 10.3973/j.issn.2096-4498.2017.S2.018

• 研究与探索 • 上一篇    下一篇

浅埋大跨偏压隧道的破坏模式分析

白传鹏1, 2, 郑盘石3,*, 王勇2, 张清光4, 陈建斌3   

  1. (1. 安徽理工大学土木建筑学院, 安徽淮南 232001; 2. 中国科学院武汉岩土力学研究所岩土力学与工程国家重点实验室, 湖北武汉 430071; 3. 武汉市政工程设计研究院有限责任公司, 湖北武汉 430023; 4. 武汉光谷建设投资有限责任公司, 湖北武汉 430205)
  • 收稿日期:2017-06-01 修回日期:2017-07-03 出版日期:2017-12-30 发布日期:2018-02-25
  • 作者简介:白传鹏(1991—),男,湖北鄂州人, 安徽理工大学土木工程专业在读硕士,研究方向为岩土力学与工程。Email: 1084071649@qq.com。*通信作者: 郑盘石, Email: pcbtwl@163.com。
  • 基金资助:

    国家自然科学基金项目(51579237); 湖北省地方标准计划项目(2013014)

Analysis of Failure Mode of Shallowburied Asymmetricallypressured Tunnel with Large Span

BAI Chuanpeng1, 2, ZHENG Panshi3,*, WANG Yong2, ZHANG Qingguang4, CHEN Jianbin3   

  1. (1. School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan 232001,  Anhui, China; 2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and  Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, Hubei, China; 3.Wuhan Municipal Engineering Design & Research Institute Co., Ltd., Wuhan 430023, Hubei, China; 4. Wuhan Optical Valley Construction Co., Ltd., Wuhan 430205, Hubei, China)
  • Received:2017-06-01 Revised:2017-07-03 Online:2017-12-30 Published:2018-02-25

摘要:

为研究浅埋大跨偏压隧道破坏模式,利用有限元强度折减法对三心圆曲墙式断面隧道和马蹄形断面隧道在不同埋深、坡比工况下的塑性应变和安全系数进行研究,得到隧道的破坏模式及发展规律: 无偏压条件下,随着埋深增加,三心圆曲墙式断面隧道最大塑性应变由拱肩向下转移到边墙附近,而对于马蹄形断面隧道,当埋深较浅时,在拱肩和边墙出现破裂面,随着埋深的增加拱肩的破裂面逐渐向边墙脚转移; 当存在偏压时,三心圆曲墙式断面隧道浅埋侧先破坏,随着埋深的增加,最大塑性应变由浅埋侧拱肩移到浅埋侧边墙位置,对于马蹄形隧道,破裂面从浅埋侧拱肩和深埋侧边墙转移到墙角; 在同一埋深条件下,三心曲墙式断面隧道安全系数高于马蹄形隧道安全系数。

关键词: 浅埋偏压隧道, 大跨度, 有限元强度折减法, 埋深, 坡比, 安全系数

Abstract:

The failure mode of shallowburied asymmetricallypressured tunnel with large span is studied in the paper. The plastic strain and safety factor of triplecenter curved wall tunnel and horseshoe shaped tunnel under different depths and slope ratios are analyzed by finite element strength reduction method. Some conclusions are drawn as follows: 1) When the tunnel is under normal pressure condition, the maximum plastic strain of triplecenter curved wall tunnel transfers from the arch to tunnel sidewall with the burial depth increase. When the tunnel is shallowburied, the fracture surface of horseshoe shaped tunnel transfers from the arch and sidewall to wall feet with the burial depth increase. 2) When the tunnel is under asymmetricallypressured condition, the failure firstly occurs in tunnel shallow buried side, and the maximum plastic strain of triplecenter curved wall tunnel transfers from the arch to sidewall with the burial depth increase. The fracture surface of horseshoe shaped tunnel transfers from the arch of the tunnel shallowburied side and sidewall of the deepburied side to the tunnel wall feet with the burial depth increase. 3) The safety factor of triplecenter curved wall tunnel is larger than that of horseshoe shaped tunnel under same buried depth.

Key words: shallowburied asymmetricallypressured tunnel, large span, finite element strength reduction method, burial depth, slope ratio, safety factor

中图分类号: