• 中国科学引文数据库(CSCD)来源期刊
  • 中文核心期刊中文科技核心期刊
  • Scopus RCCSE中国核心学术期刊
  • 美国EBSCO数据库 俄罗斯《文摘杂志》
  • 《日本科学技术振兴机构数据库(中国)》
二维码

隧道建设(中英文) ›› 2023, Vol. 43 ›› Issue (11): 1896-1907.DOI: 10.3973/j.issn.2096-4498.2023.11.009

• 研究与探索 • 上一篇    下一篇

厦门第二东通道现浇隧道结构托换运营BRT桥桩受力体系转换研究

林立华   

  1. (厦门路桥工程投资发展有限公司, 福建 厦门 361000
  • 出版日期:2023-11-20 发布日期:2023-12-08
  • 作者简介:林立华(1973—),男,福建华安人,1996年毕业于同济大学,公路与城市道路工程专业,本科,高级工程师,主要从事桥梁与隧道工程建设管理工作。Email: LLH_cn@126.com。

Stress System Transform of Operational BRT Viaduct Piles Underpinned by Cast-in-Situ Tunnel Structure of Xiamen 2nd East Passage

LIN Lihua   

  1. (Xiamen Road & Bridge Engineering Investment and Development Co., Ltd., Xiamen 361000, Fujian, China)
  • Online:2023-11-20 Published:2023-12-08

摘要:

为分析利用现浇隧道结构托换运营桥梁时托换荷载的传力路径及受力体系转换规律,基于厦门第二东通道(翔安大桥)枋钟路明挖暗埋隧道下穿运营BRT高架桥工程实例开展研究。建立桥墩竖向位移、隧道结构及桩基钢筋应力的自动化监测系统,分析承台和桥墩沉降,以及隧道顶板、中侧墙、底板及隧道中墙处端承桩受力,揭示托换荷载传力路径及隧道结构受力体系转换规律;建立考虑预应力的荷载-结构简化计算模型,计算托换荷载下隧道结构内力变化,并分析预应力作用。结果表明: 1)两托换桥墩分别产生3.304.22 mm沉降,受桥面刚度影响,邻近桥墩先于托换桥墩产生沉降;托换后,桥墩会在一定时间内持续产生缓慢沉降并趋于稳定。2)托换后桥梁荷载并非由隧道整体承担,其主要荷载由托换侧隧道顶板通过中墙和邻近侧墙传递至桩基上;底板不承担主要荷载,远离侧侧墙也不分担主要荷载。3)所建立考虑预应力的隧道荷载-结构简化计算模型变形和受力计算结果与实测值基本吻合,对比不考虑预应力时,预应力索抵抗了约25.7%的沉降。

关键词: 厦门第二东通道, BRT桥梁, 桩基托换, 明挖暗埋隧道, 受力体系转换, 预应力混凝土, 现场监测, 荷载-结构模型

Abstract: To investigate the stress transfer path and the pattern of stress system transformation during the underpinning process when using a castinsitu tunnel structure to support an operational bridge, a specific case is examined, focusing on the cutandcover tunnel beneath the Fangzhong road of the Xiamen 2nd East Passage(Xiangan bridge), which passes beneath an operational BRT viaduct. The investigation involves the establishment of an automatic monitoring system for vertical displacement in bridge abutments, tunnel structures, and reinforcement stress on piles. This system is designed to assess the settlement of bearing platforms and abutments as well as the forces acting on the top plate, middle sidewall, bottom plate, and endbearing piles at the middle wall of the tunnel. Then, the transfer paths of the underpinning load and the stress transformation pattern of the tunnel structure are revealed. Subsequently, a simplified loadstructure calculation model incorporating prestress considerations is developed to analyze internal force changes in the tunnel structure under the underpinning load and assess the prestress effect. The key findings are as follows: (1) The settlement of the two underpinned piers is measured at 3.30 mm and 4.22 mm. Notably, the neighboring pier experiences settlement before the underpinned piers due to the influence of bridge deck stiffness. Post underpinning, the bridge pier may undergo continued slow settlement for a certain period before stabilizing. (2) Following underpinning, the entire bridge load is not borne by the entire tunnel; instead, the primary load is supported by the top slab of the tunnel on the underpinned side, subsequently transferring to the pile foundation through the middle wall and adjacent sidewalls. (3) The deformation and force results are calculated by the simplified calculation model of tunnel loadstructure which considering prestress align well with the monitoring outcomes. In comparison to scenarios neglecting prestress, the inclusion of prestressed cables leads to an approximate 25.7% reduction in settlement.

Key words: Xiamen 2nd East Passage, BRT bridge, pile foundation underpinning, cut-and-cover tunnel, stress system transform, prestressed concrete, in-situ monitoring, load-structure model