• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (3): 511-520.DOI: 10.3973/j.issn.2096-4498.2025.03.006

• 研究与探索 • 上一篇    下一篇

地铁地下车站装配式结构施工受力特征监测分析

洪成雨1, 2, 林楷哲1, 2, 饶伟1, 2 *, 陈湘生1, 2, 邱桐1, 2, 张斌3, 戴继3, 贾科3   

  1. 1. 极端环境岩土和隧道工程智能建养全国重点实验室, 广东 深圳 518060 2. 深圳大学土木与交通工程学院, 广东 深圳 518060 3. 深圳市地铁集团有限公司, 广东 深圳 518038
  • 出版日期:2025-03-20 发布日期:2025-03-20
  • 作者简介:洪成雨(1982—),男,黑龙江哈尔滨人,2011年毕业于香港理工大学,岩土工程专业,博士,副教授,现从事岩土监测、地下装配式结构相关研究工作。E-mail: cyhong@szu.edu.cn。*通信作者: 饶伟, E-mail: raowei2021@email.szu.edu.cn。

Monitoring Analysis of Mechanical Characteristics of Prefabricated Structures of an Underground Metro Station During Construction Process

HONG Chengyu1, 2, LIN Kaizhe1, 2, RAO Wei1, 2, *, CHEN Xiangsheng1, 2, QIU Tong1, 2ZHANG Bin3, DAI Ji3, JIA Ke3   

  1. (1. State Key Laboratory of Intelligent Geotechnics and Tunnelling, Shenzhen 518060, Guangdong, China; 2. College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China; 3. Shenzhen Metro Group Co., Ltd., Shenzhen 518038, Guangdong, China)
  • Online:2025-03-20 Published:2025-03-20

摘要: 为解决地铁地下车站装配式结构质量与尺寸大、施工工况多,极易导致结构的变形和应力集中造成的损伤问题,基于高精度、高空间分辨率分布式OFDR技术,对地下装配式结构侧墙内部连续空间的应变进行监测,探索侧墙、顶板、相邻块的拼装,以及车站顶部回填土在多种施工工况下对侧墙内部变形特征的影响;量化分析不同施工工况对侧墙应变场与弯矩分布特征的影响规律,探究多种施工工况对侧墙结构中部与端部弯矩的贡献度,总结地铁地下车站装配式结构高风险点对应的施工工况。研究结果表明: 1)侧墙在拼装与顶部回填土阶段呈现较明显的压弯效应,顶部回填土施工阶段为装配式侧墙结构的最不利工况。2)支撑倒换与侧壁回填工序会增大侧墙结构的弯矩,平均增幅分别为42.8%19.3%; 顶部土体回填期间,B1B2侧墙最大弯矩分别较前一阶段增长510%252%3)侧墙两端与中部弯矩随拼装与回填土工况的进行而不断增大,产生明显弯曲效应。顶部回填土阶段对中部、顶部、底部的弯矩平均贡献度分别为70.4%69.4%55.1%; 由于上部回填土对侧墙弯矩贡献度最大,回填土施工阶段需要关注上部回填土压力对拼装车站侧墙结构受力的影响。

关键词: 地铁, 地下车站, 装配式结构, 光频域反射技术, 施工工况, 受力特征

Abstract: The massive weight and size of prefabricated structures in underground metro stations, combined with multiple construction conditions, can lead to structural deformation, stress reconcentration, and ultimately, structural damage. To address these challenges, high-precision and high-spatial-resolution distributed optical frequency domain reflectometry technology is utilized to monitor the strain distribution within the sidewalls of underground prefabricated structures. The authors investigate the effects of various construction conditions, including sidewall assembly, roof slab installation, adjacent block assembly, and topsoil backfilling, on the deformation characteristics of the sidewalls. In addition, the effects of varying construction conditions on the strain field and bending moment distribution in the sidewalls are quantitatively analyzed. The contributions of each construction condition to the bending moments in the middle and end positions of the sidewall structures are also investigated. The results reveal the following: (1) Distributed fiber-optic strain monitoring indicates an obvious compression bending effect on the sidewalls during the assembly and topsoil backfilling stages. Among all construction stages, the topsoil backfilling process emerges as the most unfavorable for the stability of sidewall structures. (2) The support replacement and sidewall backfilling processes cause notable increases in the bending moment of the sidewall structure, with average increases of 42.8% and 19.3%, respectively. During the topsoil backfilling stage, bending moments in the B1 and B2 sidewalls increase by 510% and 252%, respectively, compared to the previous stage. (3) Bending moments at the ends and middle of the sidewalls continuously increase with the assembly and backfilling conditions, causing significant bending effects. The average contributions of the topsoil backfilling stage to the bending moments in the middle, top, and bottom of the sidewall are 70.4%, 69.4%, and 55.1%, respectively. The topsoil backfilling contributes the most to the sidewall bending moments. Significant attention should be paid to the influence of the top overburden soil pressure on the structural behavior of the sidewalls of the prefabricated metro station.

Key words: metro, underground station, prefabricated structure, optical frequency domain reflectometry, working conditions, mechanical characteristics