• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (4): 740-748.DOI: 10.3973/j.issn.2096-4498.2025.04.008

• 研究与探索 • 上一篇    下一篇

渣土浆液在盾构壁后注浆中的再利用及配比优化研究

简永洲1, 易斌斌2, 李福东1, 钟小春2 *, 朱诚2, 3, 黄思远2   

  1. 1. 中交二公局第四工程有限公司, 河南 洛阳 471013;2. 河海大学土木与交通学院, 江苏 南京 210098;3. 中交第二公路勘察设计研究院有限公司, 湖北 武汉 430058)

  • 出版日期:2025-04-20 发布日期:2025-04-20
  • 作者简介:简永洲(1989—),男,河南信阳人,2013年毕业于河南科技大学,土木工程专业,本科,工程师,现从事隧道工程施工技术管理工作。 E-mail: 790467856@qq.com。 *通信作者: 钟小春, E-mail: 58206947@qq.com。

Recycling and Mixing Proportion Optimization of Muck Generated by Shield Tunneling in Grouting Behind Lining

JIAN Yongzhou1, YI Binbin2, LI Fudong1, ZHONG Xiaochun2, *, ZHU Cheng2, 3, HUANG Siyuan2   

  1. (1. CCCC-SHB Fourth Engineering Co., Ltd., Luoyang 471013, Henan, China; 2. College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, Jiangsu, China; 3. CCCC Second Highway Consultants Co., Ltd., Wuhan 430058, Hubei, China)

  • Online:2025-04-20 Published:2025-04-20

摘要: 盾构施工过程中产生的大量渣土不仅污染环境,而且会增加运输和处置成本。为解决这一问题,以南京地铁6号线某区间工程为依托,提出将盾构开挖排放的粉质黏土层渣土回收再利用于壁后注浆的技术方法。通过室内试验、SPSSstatistical package for the social sciences)多元非线性回归分析及多目标规划优化方法,研究渣土浆液性能随水灰比、硬化剂A和硬化剂B掺比(与水泥质量之比)的变化规律,并确定渣土浆液性能与成本的最优配比。研究主要结论为: 1TW-G系列产品适用于高含泥量浆液,其中硬化剂A具有缓凝和减水作用,硬化剂B具有促凝作用。2)多目标规划优化结果显示,性能最优配比为水灰比0.75,硬化剂A掺比为0.86%,硬化剂B掺比为12.95%; 成本最优配比为水灰比0.84,硬化剂A掺比为3.66%,硬化剂B掺比为2.91%3)现场实践表明,相比于普通单液硬性浆,渣土浆液性能更佳,用于盾构壁后注浆后地表沉降控制在12 mm以内,管片上浮控制在25 mm以内,且能够减少渣土外运10%以上,成本降低35%左右。

关键词: 盾构隧道, 盾构渣土, 壁后注浆, 渣土再利用, 浆液配比

Abstract: Shield tunneling produces a significant volume of excavated soil, leading to environmental pollution and elevated transportation and disposal costs. To address this issue, a case study is conducted on a section of the Nanjing metro line 6. A technical method is proposed to utilize the silty clay generated by shield tunneling for grouting behind lining. The performance of the grout, incorporating various water-cement ratios and mixing proportions of hardeners A and B, is evaluated through laboratory testing, non-linear regression analysis using statistical package for the social sciences (SPSS), and multi-objective optimization to identify the optimal mix for both performance and economic efficiency. The main findings are as follows: (1) TW-G is suitable for high-clay-content grout. Hardener A exhibits retarding and water-reducing effects, while Hardener B enhances coagulation and early strength. (2) Multi-objective optimization results indicate optimal performance at a water-cement ratio of 0.75, with 0.86% hardener A and 12.95% hardener B. The grout with a water-cement ratio of 0.84, 3.66% hardener A, and 2.91% hardener B achieves the greatest economic benefit. (3) Field application demonstrates that, compared to conventional single-component hard grout, the grout mixed with shield muck yields superior performance. After application, surface settlement is limited to within 12 mm, segment uplift is controlled within 25 mm, and mucking is reduced by over 10%, resulting in a 35% cost reduction.

Key words: shield tunnel, shield muck, grouting behind lining, muck recycling, grout mixing proportion