• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (4): 758-773.DOI: 10.3973/j.issn.2096-4498.2025.04.010

• 研究与探索 • 上一篇    下一篇

大断面矩形顶管地铁车站力学性能缩尺试验研究

周胜阳1, 刘树亚1 2, 蒋首超3 *, 姚浩宇3, 朱其凯3, 柳献3, 李围2, 王雷4   

  1. 1. 深圳市市政设计研究院有限公司, 广东 深圳 518029 2. 深圳市地铁集团有限公司, 广东 深圳 5180263. 同济大学, 上海 200092 4. 深圳大学, 广东 深圳 518060
  • 出版日期:2025-04-20 发布日期:2025-04-20
  • 作者简介:周胜阳(1993—),男,吉林公主岭人,2020年毕业于香港科技大学,土木工程专业,博士,工程师,主要从事地下结构、岩土结构理论与设计方法研究工作。 E-mail: szhouaq@connect.ust.hk。 *通信作者: 蒋首超, Email: scjiang@tongji.edu.cn。

Scale Model Test on Mechanical Performance of Large-Section Rectangular Pipe-Jacking Metro Station

ZHOU Shengyang1, LIU Shuya1, 2, JIANG Shouchao3, *, YAO Haoyu3, ZHU Qikai3, LIU Xian3, LI Wei2, WANG Lei4   

  1. (1. Shenzhen Municipal Design & Research Institute Co., Ltd., Shenzhen 518029, Guangdong, China; 2. Shenzhen Metro Group Co., Ltd., Shenzhen 518026, Guangdong, China; 3. Tongji University, Shanghai 200092, China; 4. Shenzhen University, Shenzhen 518060, Guangdong, China)
  • Online:2025-04-20 Published:2025-04-20

摘要: 为研究大断面矩形顶管法建造的装配式地铁车站的整体力学性能,依托深圳地铁12号线2期工程沙三站项目,参考车站的设计方案并结合有限元分析,设计车站建设过程中不同施工工况及正常使用工况下的15缩尺模型,并根据不同工况下的受力情况开展模型试验,研究结构在各工况下的力学性能;通过逐步增加荷载,研究车站的承载能力极限,并将试验结果与有限元分析结果进行对比。试验结果表明: 1)在施工工况及正常使用工况下,结构基本处于弹性变形范围内,结构顶板虽然已有部分裂缝,但裂缝宽度小于0.2 mm,各部分内力及变形均满足规范要求。2)当静力荷载达到设计荷载的2.3倍时,结构的顶板、顶部托梁跨中出现了较多裂缝,结构发生大范围屈服,变形迅速增加,荷载-位移曲线出现拐点;当静力荷载达到设计荷载的2.5倍时,顶板支座出现斜裂缝,结构承载力达到极限。3)沙三站采用的结构形式合理,满足设计要求,具有较高的安全储备。4)二维有限元分析对体系转换后的结构适用性较差,需对模型进行校正或采取三维分析方法。

关键词: 装配式车站, 整体结构, 缩尺试验, 力学性能, 顶管法

Abstract: A case study is conducted on the Shasan station of the Shenzhen metro line 12 Phase Ⅱ project to investigate the overall mechanical performance of prefabricated rectangular metro stations with large sections constructed using the pipe-jacking method. A 1:5 scale model of the station is developed to simulate various construction and operational conditions based on the stations design scheme and finite element analysis. Model tests are performed to analyze the structural mechanical behavior under different conditions. By incrementally increasing the applied loads, the ultimate bearing capacity of the station is assessed, and the experimental results are compared with those obtained through finite element analysis. The test results are summarized as follows: (1) Under construction and normal operating conditions, the station structure remains primarily within the elastic deformation range. The maximum crack width on the top slab is less than 0.2 mm, and the internal forces and deformations throughout the structure meet the relevant design requirements. (2) When the static load reaches 2.3 times the design load, extensive cracking appears on the top slab and at the mid-span of the top supporting beams, indicating widespread yielding, a sharp increase in deformation, and the emergence of an inflection point on the load-displacement curve. At 2.5 times the design load, diagonal cracks develope on the supports of the top slab, signifying that the structure has reached its ultimate bearing capacity. (3) The structural form adopted at the Shasan station demonstrates a high safety margin and meets all design requirements. (4) The two-dimensional finite element analysis method shows poor applicability for this structural form and should be revised or replaced with a three-dimensional analysis approach.

Key words: prefabricated station, overall structure, scale model, mechanical performance, pipe-jacking method