• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (8): 1602-1614.DOI: 10.3973/j.issn.2096-4498.2025.08.016

• 施工技术 • 上一篇    下一篇

盾构自主掘进与管片拼装并行控制技术工程验证

朱叶艇1, 2, 赵剑1, 毕湘利3, 朱雁飞1, 于宁3, 王秀志3, 黄德中1, 秦元1, 2   

  1. (1. 上海隧道工程有限公司, 上海 200232; 2. 上海城建隧道装备有限公司, 上海 200137; 3. 上海申通地铁集团有限公司, 上海 201103)
  • 出版日期:2025-08-20 发布日期:2025-08-20
  • 作者简介:朱叶艇(1987—),男,浙江绍兴人,2017年毕业于同济大学,隧道及地下建筑工程专业,博士,正高级工程师,主要从事盾构隧道施工新技术与智能装备研发工作。E-mail: zhuyeting@stecmc.com。

Engineering Verification of Parallel Control Technology for Automatic Shield Tunneling and Segment Assembly

ZHU Yeting1, 2, ZHAO Jian1, BI Xiangli3, ZHU Yanfei1, YU Ning3, WANG Xiuzhi3, HUANG Dezhong1, QIN Yuan1, 2   

  1. (1. Shanghai Tunnel Engineering Co., Ltd., Shanghai 200232, China; 2. Shanghai Urban Construction Tunnel Equipment Co., Ltd., Shanghai 200137, China; 3. Shanghai Shentong Metro Co., Ltd., Shanghai 201103, China)
  • Online:2025-08-20 Published:2025-08-20

摘要: 为解决盾构掘进与管片拼装并行作业时,因人工手动调整推进系统分区压力的滞后性和不精准性而导致盾构姿态波动大的问题,提出一种基于推力矢量技术实现盾构自主掘进姿态控制的方案,以消除盾构推力矢量控制人工干预的必要性。通过作业流程制定、智控系统设计、盾构装备研制以及工程实践验证,得出以下结论: 1)推进系统整体动作同步性较佳,并行控制模式下对油缸行程的利用以及人工管片拼装耗时不稳定对并行作业效率的影响较为直接; 2)推进油缸目标压力执行精度为±10%,并行控制模式下盾构速度降幅控制在8 mm/min左右,智控系统对推力的调整及时有效; 3)盾构切口姿态与推力作用点位移随时间呈镜像对称特征,油缸回缩瞬间造成的盾构姿态变化量最大为10 mm,盾构姿态整体上可控制在设定目标的±15 mm范围内; 4)通过与同类工程项目对比,盾构自主掘进与管片拼装并行控制技术相较于盾构姿态人工控制方案,在推力矢量设定、推进速度控制、盾构姿态调整等方面控制精度更高,盾构持续稳态掘进控制能力更强。

关键词: 盾构, 自主掘进, 管片拼装, 并行控制

Abstract: During synchronous shield tunneling and segment assembly, substantial shield attitude fluctuations occur due to delays and inaccuracies in manually adjusting the thrust of individual propulsion cylinders. To address this, an automatic shield attitude control system based on thrust vector technology is proposed, eliminating the need for manual intervention. The authors develop and verify the proposed approach through systematic improvements in operational processes, intelligent control system design, equipment upgrades, and engineering validation. The following conclusions are drawn: (1) The propulsion system achieves good synchronization, though cylinder stroke utilization and manual assembly instability directly affect the efficiency of parallel operations. (2) The target pressure control accuracy for propulsion cylinders is within ±10%, and the propulsion speed reduction is controlled within 8 mm/min under parallel control, with the intelligent system responding effectively to required thrust adjustments. (3) The shield cutterhead′s attitude and the displacements of the thrust action point in horizontal and vertical directions exhibit time-symmetric behavior. Although the maximum instantaneous displacement due to cylinder retraction is 10 mm, the overall shield attitude is maintained within ±15 mm of the target. (4) Compared with traditional manual control, the integrated parallel control system for automatic shield tunneling and segment assembly achieves higher precision in thrust vector control, propulsion speed regulation, and attitude adjustment, offering superior stability during continuous excavation.

Key words: shield machine, automatic shield tunneling, segment assembly, parallel control