• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (7): 1260-1271.DOI: 10.3973/j.issn.2096-4498.2025.07.003

• 研究与探索 • 上一篇    下一篇

基于2.5D FEM-MFS的高铁盾构隧道车致振动传播机制及环境响应研究

徐晨1, 2, 肖明清1, 2, 薛光桥1, 2, 何应道1, 2, 徐巍1, 2, 王春晖3, 4, *   

  1. (1. 中铁第四勘察设计院集团有限公司, 湖北 武汉 430063; 2. 水下隧道技术国家地方联合工程研究中心, 湖北 武汉 430063; 3. 山东建筑大学土木工程学院, 山东 济南 250101;4. 哈尔滨工业大学(深圳)土木与环境工程学院, 广东 深圳 518067)
  • 出版日期:2025-07-20 发布日期:2025-07-20
  • 作者简介:徐晨(1992—),男,江苏沛县人,2017年毕业于西南交通大学,隧道与地下工程专业,硕士,高级工程师,现从事隧道及地下工程设计研究工作。 E-mail: 006341@crfsdi.com。*通信作者: 王春晖, E-mail: wangchunhui23@sdjzu.edu.cn。

Propagation Mechanisms and Environmental Responses of Train-Induced Vibrations in High-Speed Railway Shield Tunnels: A 2.5-Dimensional Finite Element Method-Method of Fundamental Solutions Approach

XU Chen1, 2, XIAO Mingqing1, 2, XUE Guangqiao1, 2, HE Yingdao1, 2, XU Wei1, 2, WANG Chunhui3, 4, *   

  1. (1. China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan 430063, Hubei, China; 2. Subaqueous Tunnel Technology National Engineering Research Center, Wuhan 430063, Hubei, China; 3. School of Civil Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China; 4. School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518067, Guangdong, China)

  • Online:2025-07-20 Published:2025-07-20

摘要: 为在城市密集区的高铁选线及环境振动评价提供理论依据,明确高铁盾构隧道车致振动对沿线环境的振动影响特征与规律,采用基于2.5D有限元-基本解方法(2.5D FEM-MFS)的车致环境振动预测模型,以设计车速为350 km/h、外径为13.8 m的高铁盾构隧道为研究对象,通过轮轨耦合动力学与波数域场耦合分析,揭示典型工况高铁盾构隧道车致振动振源及传播规律。研究结果表明: 1)高铁盾构隧道振动呈现显著的频段分化特征,30 Hz以下低频振动以围岩剪切波形式传播(波速为734 m/s),30~70 Hz频段为管片-围岩协同振动,80 Hz以上高频振动由管片弯曲波主导(波速为1 066 m/s或2 000 m/s); 2)隧道内Z振级从轨道板处80.9 dB衰减至拱顶47.6 dB,隧道拱顶两侧因高阶振型出现55 dB局部放大; 3)地表振动呈现非单调空间衰减特性,存在局部振动放大现象,最大Z振级46.7 dB出现在距隧道中线32 m处,满足Ⅰ类振动功能区限值要求,最大速度为1.73 μm/s,满足VC-E级精密仪器容许标准; 4)与典型地铁环境振动工况相比,高铁盾构隧道内具有Z振级较低、地表环境振动高频分频振级较低,但随距离衰减缓慢的特征。

关键词: 高铁地下线, 盾构隧道, 环境振动, 2.5D有限元-基本解方法

Abstract: The characteristics and propagation mechanisms of train-induced vibrations in high-speed railway shield tunnels are critical for route selection and the assessment of vibration-induced environmental impacts in densely built urban areas. In this study, a train-induced vibration prediction model is established based on a 2.5-dimensional finite element method-method of fundamental solutions (2.5D FEM-MFS). Focusing on a 350 km/h high-speed railway shield tunnel with an external diameter of 13.8 m, wheel-rail coupling dynamics and wavenumber-domain field coupling analyses reveal the vibration source characteristics and propagation patterns under typical operational conditions. The primary findings are as follows: (1) Train-induced vibrations in high-speed railway shield tunnels exhibit distinct frequency-dependent propagation; components below 30 Hz primarily propagate as shear waves in the surrounding rock (734 m/s wave velocity), components within 30-70 Hz involve coupled vibration of the tunnel and soil, and components above 80 Hz are dominated by segment bending waves (1 066 m/s and 2 000 m/s). (2) The Z vibration level attenuates from 80.9 dB at the track slab to 47.6 dB at the crown, with localized amplification up to 55 dB at the sidewalls due to higher-order vibration modes. (3) Surface vibrations exhibit non-monotonic spatial attenuation with localized amplification, where the maximum vibration level of 46.1 dB occurs 43 m from the tunnel centerline (complying with Class Ⅰ vibration limits), and the maximum velocity of 1.73 μm/s meets VC-E criteria for precision instruments. (4) Compared to typical metro vibration conditions, high-speed railway shield tunnels exhibit lower internal vibration levels and reduced surface high-frequency band vibration levels, although the latter attenuates more gradually with distance.

Key words: high-speed railway underground lines, shield tunnels, environmental vibration, 2.5-dimensional finite element method-method of fundamental solutions