• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (7): 1336-1344.DOI: 10.3973/j.issn.2096-4498.2025.07.010

• 地质与勘察 • 上一篇    下一篇

复杂海域海底盾构隧道精细化地质探测技术——以甬舟高速复线金塘海底隧道工程为例

楼凯峰, 彭丁茂, 包晓明, 郑儒, 郝晓菡   

  1. (浙江数智交院科技股份有限公司, 浙江 杭州 310030)
  • 出版日期:2025-07-20 发布日期:2025-07-20
  • 作者简介:楼凯峰(1980—),男,浙江临安人,2006年毕业于东华理工学院,地球探测与信息技术专业,硕士,正高级工程师,长期从事交通相关的工程物探工作。E-mail: kelvin_lkf@163.com。

Refined Exploration of Geological Conditions for Shield Tunneling Under Seabed in Complex Marine Environments: A Case Study of Jintang Subsea Tunnel Project on Ningbo-Zhoushan Expressway Second Line

LOU Kaifeng, PENG Dingmao, BAO Xiaoming, ZHENG Ru, HAO Xiaohan   

  1. (Zhejiang Institute of Communications Co., Ltd., Hangzhou 310030, Zhejiang, China)
  • Online:2025-07-20 Published:2025-07-20

摘要: 甬舟高速复线金塘海底隧道具有“超大、超长、超深”的特点,隧址区地形、洋流、地质条件复杂,且气候多变、船只繁忙,勘探难度大、精度要求高。在广泛收集资料、深入分析场地环境及开展典型路段现场试验的基础上,研究制定以水域单道地震为主、多道地震为辅,水域瞬变电磁法、多波束测深等多种水域物探方法与钻探相结合的综合勘探技术体系。在实施过程中,通过获取海量高质量原始数据,并采用先进的处理技术对数据进行精细化处理,确保数据精度与可靠性;运用科学的分析方法(如单道地震为主与多道地震为辅的联合解译、多方法相互验证等)对成果进行系统解译,形成可靠的地质认识。在工程应用中,通过物探成果先行判断整体地质形态,钻探进一步验证和深化场地地层分布特征,动态优化线路设计方案,实现复杂海域海底地层的精细化划分、基岩起伏的高精度判识、地质环境的科学分区、高分辩率三维工程地质模型的构建,达到优化隧道设计方案、降低工程成本、缩短勘察周期的目的。

关键词: 复杂海域, 超大直径盾构隧道, 水域地震法, 精细化分层, 三维地质建模, 综合勘探方法

Abstract: The Jintang subsea tunnel of the Ningbo-Zhoushan expressway second line is notable for its large size, exceptional length, and significant depth. The project site presents complex terrain, varying ocean currents, and diverse geological conditions, compounded by fluctuating weather and heavy maritime traffic, which make exploration challenging while demanding high precision. The authors outline a comprehensive exploration methodology that incorporates extensive data collection, thorough analysis of the site environment, and field tests in representative sections. The methodology primarily utilizes single-channel seismic methods, with multi-channel seismic methods serving as support, alongside the integration of marine transient electromagnetic techniques and depth-measuring methods at multiple speeds. During implementation, a substantial volume of high-quality raw data is collected, followed by advanced processing techniques to enhance data accuracy and reliability. Scientific analytical methods, including the integrated interpretation of single- and multi-channel seismic data and cross-validation of various techniques, are employed to systematically analyze results and derive reliable geological insights. Regarding engineering applications, geophysical findings are first used to evaluate the overall geological structure, which is then verified through drilling to refine stratigraphic distribution characteristics. This approach facilitates the dynamic optimization of tunnel alignment design by enabling accurate subsea stratigraphic classification, precise identification of bedrock undulations, scientific zoning of geological environments, and the development of a high-resolution three-dimensional engineering geological model. These results enhance tunnel design, lower construction costs, and shorten survey cycles, thereby offering strong technical support for subsea tunnel projects.

Key words: complex marine environments, ultra-large diameter shield tunnel, offshore seismic prospecting, refined stratigraphy division, three-dimensional geological modeling, integrated survey method